Sufficient Second-Order Conditions for Bang-Bang Control Problems

We provide sufficient optimality conditions for optimal control problems with bang-bang controls. Building on a structural assumption on the adjoint state, we additionally need a weak second-order condition. This second-order condition is formulated with functions from an extended critical cone, and it is equivalent to a formulation posed on measures supported on the set where the adjoint state vanishes. If our sufficient optimality condition is satisfied, we obtain a local quadratic growth condition in $L^1(\Omega)$.

[1]  Ursula Felgenhauer,et al.  On Stability of Bang-Bang Type Controls , 2002, SIAM J. Control. Optim..

[2]  Helmut Maurer,et al.  Equivalence of second order optimality conditions for bang-bang control problems. Part 1: Main results , 2005 .

[3]  Vladimir M. Veliov,et al.  Error analysis of discrete approximations to bang-bang optimal control problems: the linear case , 2005 .

[4]  H. Maurer,et al.  Equivalence of second order optimality conditions for bang-bang control problems. Part 2 : Proofs, variational derivatives and representations , 2007 .

[5]  E. Casas,et al.  Pontryagin's Principle For Local Solutions of Control Problems with Mixed Control-State Constraints , 2000, SIAM J. Control. Optim..

[6]  Benjamin Pfaff,et al.  Perturbation Analysis Of Optimization Problems , 2016 .

[7]  Helmut Maurer,et al.  First and second-order necessary and sufficient optimality conditions for infinite-dimensional programming problems , 1979, Math. Program..

[8]  Helmut Maurer,et al.  Second order optimality conditions for bang-bang control problems , 2003 .

[9]  E. Casas Boundary control of semilinear elliptic equations with pointwise state constraints , 1993 .

[10]  Michael Hinze,et al.  A note on the approximation of elliptic control problems with bang-bang controls , 2010, Computational Optimization and Applications.

[11]  Desineni S Naidu,et al.  Calculus of Variations and Optimal Control , 2018, Optimal Control Systems.

[12]  Gerd Wachsmuth,et al.  Convergence and regularization results for optimal control problems with sparsity functional , 2011 .

[13]  Helmut Maurer,et al.  Second Order Sufficient Conditions for Time-Optimal Bang-Bang Control , 2003, SIAM J. Control. Optim..

[14]  P. Pollett,et al.  UNIQUENESS CRITERIA FOR , 2005 .

[15]  W. Alt,et al.  Regularization and discretization of linear-quadratic control problems , 2011 .

[16]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[17]  C. Meyer,et al.  Uniqueness Criteria for the Adjoint Equation in State-Constrained Elliptic Optimal Control , 2011 .

[18]  G. Stampacchia,et al.  Inverse Problem for a Curved Quantum Guide , 2012, Int. J. Math. Math. Sci..

[19]  Daniel Wachsmuth,et al.  Robust error estimates for regularization and discretization of bang–bang control problems , 2015, Comput. Optim. Appl..

[20]  E. Casas Pontryagin's Principle for State-Constrained Boundary Control Problems of Semilinear Parabolic Equations , 1997 .

[21]  Eduardo Casas,et al.  Second Order Analysis for Bang-Bang Control Problems of PDEs , 2012, SIAM J. Control. Optim..