Integrity of Pipelines Transporting Hydrocarbons

Size effect in structures has been taken into consideration over the last years. In comparison with coatings with micrometer-ranged thickness, nanostructured coatings usually enjoy better and appropriate properties, such as strength and resistance. These coatings enjoy unique magnetic properties and are used with the aim of producing surfaces resistant against erosion, lubricant system, cutting tools, manufacturing hardened sporadic alloys, being resistant against oxidation and corrosion.This book reviews researches on fabrication and classification of nanostructured coatings with focus on size effect in nanometric scale. Size effect on electrochemical, mechanical and physical properties of nanocoatings are presented.

[1]  Api Standard,et al.  Welding of Pipelines and Related Facilities , 2006 .

[2]  E. R. Rios,et al.  ANALYSIS OF CRACK TIP HYDROGEN DISTRIBUTION UNDER I/II MIXED MODE LOADS , 1994 .

[3]  M. Elboujdaini,et al.  Development of a Predictive Model for the Initiation and Early Stage Growth of Near Neutral pH SCC of Pipeline Steels , 2001 .

[4]  I. Scheider,et al.  Simulation of hydrogen assisted stress corrosion cracking using the cohesive model , 2008 .

[5]  G. T. V. Rooyen,et al.  The Toughness of the Heat-affected Zone of Welds , 2012 .

[6]  Ian A. Frigaard,et al.  Start-up transients and efficient computation of isothermal waxy crude oil flows , 2007 .

[7]  M. Bergoglio,et al.  Gas flowrate measurements for leak calibration , 1995 .

[8]  R. Wanhill Fracture control guidelines for stress corrosion cracking of high strength alloys , 1991 .

[9]  Ke Yang,et al.  The effects of thermo-mechanical control process on microstructures and mechanical properties of a commercial pipeline steel , 2002 .

[10]  M. Pavier,et al.  The role of T-stress in brittle fracture for linear elastic materials under mixed-mode loading , 2001 .

[11]  Leonard Steinborn,et al.  International Organization for Standardization ISO/IEC 17025 General Requirements for the Competence of Testing and Calibration Laboratories , 2004 .

[12]  Manuela Gentile,et al.  Il rischio di tensocorrosione da H2S all’esterno di condotte sottomarine: una metodologia di valutazione quantitativa , 2010 .

[13]  P. Gordon Metal-Induced embrittlement of metals—an evaluation of embrittler transport mechanisms , 1978 .

[14]  Khlefa Alarbe Esaklul,et al.  Handbook of case histories in failure analysis , 1992 .

[15]  K. Ravi-Chandar,et al.  Some basic problems in stress wave dominated fracture , 1985 .

[16]  S. Lambert,et al.  Transgranular Stress Corrosion Cracking of X-60 Pipeline Steel in Simulated Ground Water , 1999 .

[17]  Yu. G. Matvienko,et al.  Failure Assessment Diagrams in Structural Integrity Analysis , 2009 .

[18]  M. Williams,et al.  On the Stress Distribution at the Base of a Stationary Crack , 1956 .

[19]  A. Bakker,et al.  Hydrogen transport near a blunting crack tip , 1999 .

[20]  J-integral evaluation for U- and V-blunt notches under Mode I loading and materials obeying a power hardening law , 2007 .

[21]  E. A. Charles,et al.  Hydrogen embrittlement of high strength pipeline steels , 2006 .

[22]  K. Ravi-Chandar,et al.  Evaluation of elastic T-stress by the stress difference method , 1999 .

[23]  J. Rice,et al.  Limitations to the small scale yielding approximation for crack tip plasticity , 1974 .

[24]  Stanley T. Rolfe,et al.  Effects of crack depth on elastic-plastic fracture toughness , 1991 .

[25]  D. R. Jones,et al.  Failure by liquid metal induced embrittlement , 1994 .

[26]  A. Saniere,et al.  Pipeline Transportation of Heavy Oils, a Strategic, Economic and Technological Challenge , 2004 .

[27]  N. Dowling,et al.  Fatigue Crack Growth During Gross Plasticity and the J-Integral , 1976 .

[28]  Yunmin Kim,et al.  Development of limit load solutions for corroded gas pipelines , 2003 .

[29]  S. Melin Why do cracks avoid each other? , 1983 .

[30]  A. G. Miller,et al.  Review of limit loads of structures containing defects , 1988 .

[31]  S. Bakhtiari,et al.  Microwave radar detection of gas pipeline leaks. , 2002 .

[32]  M. Hauge,et al.  The effect of T stress on the near tip stress field of an elastic-plastic interface crack , 2012 .

[33]  H. M. Nykyforchyn,et al.  In-service degradation of gas trunk pipeline X52 steel , 2008 .

[34]  Wei Yan,et al.  Relation among rolling parameters, microstructures and mechanical properties in an acicular ferrite pipeline steel , 2009 .

[35]  R. Coade,et al.  The interaction of mercury and aluminium in heat exchangers in a natural gas plants , 2006 .

[36]  M Suresh Kumar,et al.  Failure analysis of a stainless steel pipeline , 2008 .

[37]  Kazuaki Shiozawa,et al.  CRACK INITIATION AND SMALL FATIGUE CRACK GROWTH BEHAVIOUR OF SQUEEZE‐CAST Al‐Si ALUMINIUM ALLOYS , 1997 .

[38]  V. Torop,et al.  Effect of long-term service on the tensile properties and capability of pipeline steel 17GS to resist cleavage fracture , 2004 .

[39]  Baidurya Bhattacharya,et al.  Continuum damage mechanics analysis of fatigue crack initiation , 1998 .

[40]  J. Landes,et al.  An Evaluation of Rising Load K Iscc Testing , 1976 .

[41]  G. Pluvinage,et al.  Gouge Assessment for Pipes and Associated Transferability Problem , 2009 .

[42]  W. Dietzel,et al.  Studies of SCC and Hydrogen Embrittlement of High Strength Alloys Using Fracture Mechanics Methods , 2005 .

[43]  T. W. Hamby,et al.  Producing Mississippi's deep high pressure sour gas , 1975 .

[44]  Gong Jing,et al.  Apparent viscosity prediction of non-Newtonian water-in-crude oil emulsions , 2006 .

[45]  W. C. Brown,et al.  Ultrasound Techniques for Leak Detection , 2009 .

[46]  De Richardson,et al.  Experimental Verification of a New Two-Parameter Fracture Model , 1993 .

[47]  Z. Stachurski,et al.  The Mechanism of Hydrogen Evolution on Iron in Acid Solutions by Determination of Permeation Rates , 1964 .

[48]  M. R. Pinnel,et al.  Voluminous oxidation of aluminium by continuous dissolution in a wetting mercury film , 1972 .

[49]  M. Bergoglio,et al.  Mathematical model applied to the experimental calibration results of a capillary standard leak , 2006 .

[50]  D. Wu,et al.  Application of fracture mechanics techniques to the environmentally assisted cracking of aluminium 2024 , 1989 .

[51]  S. Lambert,et al.  Mechanical Factors Affecting Stress Corrosion Crack Growth Rates in Buried Pipelines , 2000 .

[52]  J. Toribio,et al.  The Effect of History on Hydrogen Assisted Cracking: 2. A revision of K-dominance , 1997 .

[53]  K. Ogawa,et al.  Corrosion Resistance of Weldable Super 13Cr Stainless Steel in H2S Containing CO2 Environments , 1996 .

[54]  H. Nykyforchyn,et al.  Corrosion Resistance of Pipe Steel in Oil–Water Media , 2002 .

[55]  M. Ferrante,et al.  Detecting leaks in pressurised pipes by means of transients , 2001 .

[56]  Ke Yang,et al.  Challenge of mechanical properties of an acicular ferrite pipeline steel , 2006 .

[57]  K. Kurzydłowski,et al.  Corrosion and stress-corrosion cracking of exploited storage tank steel , 2004 .

[58]  J. Hancock,et al.  The effect of non-singular stresses on crack-tip constraint , 1991 .

[59]  Charles D. Ehrlich,et al.  Recommended practices for the calibration and use of leaks , 1992 .

[60]  Rolf Nyborg,et al.  Implementation of CO2 Corrosion Models in a Three-Phase Fluid Flow Model , 2000 .

[61]  J. Toribio,et al.  The reliability of the fracture mechanics approach to environmentally assisted cracking: 2. Engineering safe design , 1997 .

[62]  J. E. Hood Fracture of steel pipelines , 1974 .

[63]  Y. Peysson,et al.  Rheological and Flow Properties of Gas Hydrate Suspensions , 2004 .

[64]  G. Pluvinage,et al.  Constraint Parameter for a Longitudinal Surface Notch in a Pipe Submitted to Internal Pressure , 2008 .

[65]  K. Ravi-Chandar,et al.  An experimental investigation into dynamic fracture: III. On steady-state crack propagation and crack branching , 1984 .

[66]  Michael J. Pazzani,et al.  A Principal Components Approach to Combining Regression Estimates , 1999, Machine Learning.

[67]  R. Winston Revie,et al.  Mechanistic Aspects of Stress Corrosion Crack Initiation and Early Propagation , 1999 .

[68]  M. Sano,et al.  Transition between crack patterns in quenched glass plates , 1993, Nature.

[69]  D. Parks,et al.  Growth modes of cracks in creeping type 304 stainless steel , 1991 .

[70]  Nakamura Toshio,et al.  Determination of elastic T-stress along three-dimensional crack fronts using an interaction integral , 1992 .

[71]  Xiaopeng Xu,et al.  Stress and strain fields at the tip of a sharp V-notch in a power-hardening material , 1987, International Journal of Fracture.

[72]  Norman A. Fleck,et al.  Crack path selection in a brittle adhesive layer , 1991 .

[73]  S. Strm,et al.  Improving Neural Network Models of a Hydrolysis Process by Integration of A Priori Knowledge Sre , 2022 .

[75]  Ronald A. Roberts,et al.  Leak detection in spacecraft using structure-borne noise with distributed sensors , 2005 .

[76]  Yuh J. Chao,et al.  Brittle fracture: Variation of fracture toughness with constraint and crack curving under mode I conditions , 2001 .

[77]  Yong Zhi Wang,et al.  Stress Corrosion Crack Initiation Processes: Pitting and Microcrack Coalescence , 2000 .

[78]  H. Nykyforchyn,et al.  In-service degradation diagnostics of low-alloyed steels and aluminum alloys properties by electrochemical methods , 2016 .

[79]  Ke Yang,et al.  Study of high strength pipeline steels with different microstructures , 2009 .

[80]  J. Hancock,et al.  Constraint and Toughness Parameterized by T , 1993 .

[81]  H. Altenbach,et al.  A GENERALIZED FATIGUE LIMIT CRITERION AND A UNIFIED THEORY OF LOW-CYCLE FATIGUE DAMAGE , 1996 .

[82]  B. Cotterell On fracture path stability in the compact tension test , 1970 .

[83]  R. Tanner,et al.  A new constitutive equation derived from network theory , 1977 .

[84]  C. Barana Influence of non-singular stress terms and specimen geometry on small-scale yielding at crack tips in elastic-plastic materials , 2009 .

[85]  G. Ugiansky,et al.  Stress Corrosion Cracking—The Slow Strain-Rate Technique , 1979 .

[86]  Yu. G. Matvienko,et al.  Local fracture criterion to describe failure assessment diagrams for a body with a crack/notch , 2003 .

[87]  R. H. Dodds,et al.  J and CTOD Estimation Equations for Shallow Cracks in Single Edge Notch Bend Specimens , 1993 .

[88]  Krishnaswamy Rajagopal,et al.  Viscosity of water-in-oil emulsions: Variation with temperature and water volume fraction , 2005 .

[89]  L. Banks‐Sills,et al.  Fracture testing of Brazilian disk sandwich specimens , 2002 .

[90]  A. Calcatelli,et al.  The IMGC-CNR flowmeter for automatic measurements of low-range gas flows , 2003 .

[91]  J. Willis Asymptotic analysis in fracture: An update , 1999 .

[92]  W. Brocks,et al.  Simulation of Stress-Corrosion Cracking by the Cohesive Model , 2009 .

[93]  S. Lynch Metal-induced embrittlement of materials , 1992 .

[94]  R. N. Parkins,et al.  Initiation of Environment Induced Cracking in Pipeline Steel: Microstructural Correlations , 1998 .

[95]  R. N. Parkins,et al.  Investigation of stress corrosion crack growth in Mg alloys using J-integral estimations , 1985 .

[96]  B. Cotterell,et al.  Notes on the paths and stability of cracks , 1966 .

[97]  C. Shih,et al.  Effect of Constraint on Specimen Dimensions Needed to Obtain Structurally Relevant Toughness Measures , 1993 .

[99]  J. Hancock,et al.  Two-Parameter Characterization of Elastic-Plastic Crack-Tip Fields , 1991 .

[100]  Beatrice Fischer,et al.  LNG process selection, no easy task , 2004 .

[101]  Stanislav Seitl,et al.  Two Parameter Fracture Mechanics: Fatigue Crack Behavior under Mixed Mode Condition , 2008, CP 2013.

[102]  Jdg Sumpter,et al.  An Experimental Investigation of the T Stress Approach , 1993 .

[103]  O. T. Tsyrul’nyk,et al.  Effect of the long‐term service of the gas pipeline on the properties of the ferrite–pearlite steel , 2009 .

[104]  Paul Slatter,et al.  The rheological characterization and pipeline flow of high concentration water-in-oil emulsions , 2003 .

[105]  Anderson,et al.  Stress Corrosion Evaluation of Titanium Alloys Using Ductile Fracture Mechanics Technology , 1984 .

[106]  R. R. Fessler,et al.  Role of Prior Cyclic Loading in the Initiation of Stress-Corrosion Cracks on Pipeline Steels Exposed to Near-Neutral pH Environment , 2000 .

[107]  Asymptotic deformation and stress fields at the tip of a sharp notch in an elastic-plastic material , 1992, International Journal of Fracture.

[108]  Weixing Chen,et al.  Environmental Effect of Crack Growth Rate of Pipeline Steel in Near-Neutral pH Soil Environments , 2004 .

[109]  J. Toribio,et al.  The Effect of History on Hydrogen Assisted Cracking: 1. Coupling of hydrogenation and crack growth , 1997 .

[110]  R. Tuttle Corrosion in oil and gas production , 1987 .

[111]  Y. J. Chao,et al.  Variation of fracture toughness with constraint , 2003 .

[112]  M. Watkins,et al.  Corrosion Testing of Highly Alloyed Materials For Deep, Sour Gas Well Environments , 1976 .

[113]  R. P. Johnson,et al.  General rules and rules for buildings , 2004 .

[114]  L. Karlsson,et al.  Developments in the welding of supermartensitic stainless steels: recent developments and applications , 2004 .

[115]  E. Gamboa,et al.  Fatigue of stress corrosion cracks in X65 pipeline steels , 2008 .

[116]  Xian‐Fang Li,et al.  T-Stresses Across Static Crack Kinking , 2007 .

[117]  K.-H. Schwalbe,et al.  On the Experimental Determination of CTOD Based R-Curves , 1986 .

[118]  G. Pluvinage,et al.  The effective T-stress estimation and crack paths emanating from U-notches , 2010 .

[119]  E. G. Ellison,et al.  ELASTIC-PLASTIC BEHAVIOUR AND UNIAXIAL LOW CYCLE FATIGUE LIFE OF NOTCHED SPECIMENS , 1995 .

[120]  M. Pavier,et al.  Mode I cracks subjected to large T-stresses , 2002 .

[121]  O. T. Tsyrul’nyk,et al.  Hydrogen degradation of steels in gas mains after long periods of operation , 2007 .

[122]  M. Bergoglio,et al.  Leak detection, calibrations and reference flows: Practical example , 2007 .

[123]  I. Scheider Simulation of cup-cone fracture in round bars using the cohesive zone model , 2001 .

[124]  Albert S. Kobayashi,et al.  Dynamic crack curving—A photoelastic evaluation , 1983 .

[125]  B. Karlsson,et al.  SMALL FATIGUE CRACKS IN AN AUSTENITIC STAINLESS STEEL , 1998 .

[126]  J. Toribio,et al.  K‐DOMINANCE CONDITION IN HYDROGEN ASSISTED CRACKING: THE ROLE OF THE FAR FIELD , 1997 .

[127]  J. Rice,et al.  Slightly curved or kinked cracks , 1980 .

[128]  V. Makarenko,et al.  Crack resistance of pipe steels in industrial oil pipelines , 2008 .

[129]  James G. Goree,et al.  T-stress based fracture model for cracks in isotropic materials , 1998 .

[130]  Giovanna Gabetta,et al.  Corrosion And Flow Models Predictions Compared Using Case Histories , 2007 .

[131]  J. Toribio,et al.  The reliability of the fracture mechanics approach to environmentally assisted cracking: 1. Uniqueness of the v(K)-curve , 1997 .

[132]  Pavel Hutař,et al.  Quantification of the effect of specimen geometry on the fatigue crack growth response by two-parameter fracture mechanics , 2004 .

[133]  K. W. Liu,et al.  Fatigue Crack Growth Under General-Yielding Cyclic-Loading , 2008 .

[134]  K. J. Miller,et al.  Materials science perspective of metal fatigue resistance , 1993 .

[135]  E. Lunarska,et al.  Environmentally assisted “in-bulk” steel degradation of long term service gas trunkline , 2010 .

[136]  M. Djabourov,et al.  Rheology and structure of waxy crude oils in quiescent and under shearing conditions , 2004 .

[137]  T. Sham The determination of the elastic T-term using higher order weight functions , 1991 .

[138]  Werner Scholl,et al.  Measurement and testing of the acoustic properties of materials: a review , 2010 .

[139]  M. N. James,et al.  LOW CYCLE FATIGUE LIVES OF NOTCHED COMPONENTS , 1989 .

[140]  Murray Rudman,et al.  Turbulent pipe flow of shear-thinning fluids , 2004 .

[141]  Solveig Melin,et al.  The influence of the T-stress on the directional stability of cracks , 2002 .

[142]  John C. Lippold,et al.  Welding Metallurgy and Weldability of Stainless Steels , 2005 .

[143]  J. Toribio,et al.  Evaluation of hydrogen assisted cracking: the meaning and significance of the fracture mechanics approach , 1998 .

[144]  Andrew H. Sherry,et al.  COMPENDIUM OF T‐STRESS SOLUTIONS FOR TWO AND THREE DIMENSIONAL CRACKED GEOMETRIES , 1995 .

[145]  Y. Nechaev Metallic materials for the hydrogen energy industry and main gas pipelines: complex physical problems of aging, embrittlement, and failure , 2008 .

[146]  P. Leevers,et al.  Inherent stress biaxiality in various fracture specimen geometries , 1982 .