Experimental Demonstration of a Magnetically Induced Warping Transition in a Topological Insulator Mediated by Rare-Earth Surface Dopants.

Magnetic topological insulators constitute a novel class of materials whose topological surface states (TSSs) coexist with long-range ferromagnetic order, eventually breaking time-reversal symmetry. The subsequent bandgap opening is predicted to co-occur with a distortion of the TSS warped shape from hexagonal to trigonal. We demonstrate such a transition by means of angle-resolved photoemission spectroscopy on the magnetically rare-earth (Er and Dy) surface-doped topological insulator Bi2Se2Te. Signatures of the gap opening are also observed. Moreover, increasing the dopant coverage results in a tunable p-type doping of the TSS, thereby allowing for a gradual tuning of the Fermi level toward the magnetically induced bandgap. A theoretical model where a magnetic Zeeman out-of-plane term is introduced in the Hamiltonian governing the TSS rationalizes these experimental results. Our findings offer new strategies to control magnetic interactions with TSSs and open up viable routes for the realization of the quantum anomalous Hall effect.

[1]  M. Ynsa,et al.  Process design for the manufacturing of soft X-ray gratings in single-crystal diamond by high-energy heavy-ion irradiation , 2022, The European Physical Journal Plus.

[2]  M. A. Valbuena,et al.  Slow Magnetic Relaxation of Dy Adatoms with In-Plane Magnetic Anisotropy on a Two-Dimensional Electron Gas , 2022, ACS nano.

[3]  J. Brink,et al.  Magnetic warping in topological insulators , 2022, Physical Review Research.

[4]  D. Xing,et al.  Three-Dirac-fermion approach to unexpected gapless surface states of van der Waals magnetic topological insulators , 2022, 2205.08204.

[5]  Binghai Yan,et al.  Momentum-inversion symmetry breaking on the Fermi surface of magnetic topological insulators , 2022, Physical Review Materials.

[6]  T. Hesjedal,et al.  Magnetic Topological Insulator Heterostructures: A Review , 2021, Advanced materials.

[7]  M. Garnica,et al.  Native point defects and their implications for the Dirac point gap at MnBi2Te4(0001) , 2021, npj Quantum Materials.

[8]  H. Kohno,et al.  Spintronic properties of topological surface Dirac electrons with hexagonal warping , 2021 .

[9]  K. He MnBi2Te4-family intrinsic magnetic topological materials , 2020, npj Quantum Materials.

[10]  A. I. Figueroa,et al.  Absence of Magnetic Proximity Effect at the Interface of Bi_{2}Se_{3} and (Bi,Sb)_{2}Te_{3} with EuS. , 2020, Physical review letters.

[11]  J. Ortega,et al.  Influence of 4f filling on electronic and magnetic properties of rare earth-Au surface compounds. , 2020, Nanoscale.

[12]  K. Schouteden,et al.  Identifying Native Point Defects in the Topological Insulator Bi2Te3. , 2020, ACS nano.

[13]  E. Schierle,et al.  Incipient antiferromagnetism in the Eu-doped topological insulatorBi2Te3 , 2020, Physical Review B.

[14]  M. Kamp,et al.  Incorporation of Europium in Bi2Te3 Topological Insulator Epitaxial Films , 2020 .

[15]  Kang L. Wang,et al.  Probing the low-temperature limit of the quantum anomalous Hall effect , 2020, Science Advances.

[16]  S. Valenzuela,et al.  A Molecular Approach for Engineering Interfacial Interactions in Magnetic-Topological Insulator Heterostructures. , 2020, ACS nano.

[17]  Baigeng Wang,et al.  The Material Efforts for Quantized Hall Devices Based on Topological Insulators , 2019, Advanced materials.

[18]  T. Hesjedal Rare Earth Doping of Topological Insulators: A Brief Review of Thin Film and Heterostructure Systems , 2019, physica status solidi (a).

[19]  A. Ney,et al.  Large magnetic gap at the Dirac point in Bi2Te3/MnBi2Te4 heterostructures , 2018, Nature.

[20]  G. Bihlmayer,et al.  Towards microscopic control of the magnetic exchange coupling at the surface of a topological insulator , 2018, Journal of Physics: Materials.

[21]  V. N. Zverev,et al.  Prediction and observation of an antiferromagnetic topological insulator , 2018, Nature.

[22]  R. Wu,et al.  Magnetizing topological surface states of Bi2Se3 with a CrI3 monolayer , 2018, Science Advances.

[23]  Moon J. Kim,et al.  Interface Chemistry of Contact Metals and Ferromagnets on the Topological Insulator Bi2Se3 , 2017 .

[24]  M. Vergniory,et al.  Magnetic extension as an efficient method for realizing the quantum anomalous hall state in topological insulators , 2017 .

[25]  M. Pivetta,et al.  Superlattice of Single Atom Magnets on Graphene. , 2016, Nano letters.

[26]  J. Ortega,et al.  High Temperature Ferromagnetism in a GdAg2 Monolayer. , 2016, Nano letters.

[27]  M. Pivetta,et al.  Magnetic Hysteresis in Er Trimers on Cu(111). , 2016, Nano letters.

[28]  A. I. Figueroa,et al.  Oxidation Effects in Rare Earth Doped Topological Insulator Thin Films , 2016, Scientific Reports.

[29]  S. Blugel,et al.  Superparamagnetism-induced mesoscopic electron focusing in topological insulators , 2016, 1602.03902.

[30]  A. Kellock,et al.  Massive Dirac Fermion Observed in Lanthanide-Doped Topological Insulator Thin Films , 2015, Scientific Reports.

[31]  L. Molenkamp,et al.  Coincidence of superparamagnetism and perfect quantization in the quantum anomalous Hall state , 2015, 1507.04948.

[32]  M. Katsnelson,et al.  Dirac electrons and domain walls: a realization in junctions of ferromagnets and topological insulators , 2015, 1506.07668.

[33]  A. I. Figueroa,et al.  Study of Dy-doped Bi2Te3: thin film growth and magnetic properties , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[34]  Hanchul Kim,et al.  Magnetic Transition to Antiferromagnetic Phase in Gadolinium Substituted Topological Insulator Bi2Te3 , 2015, Scientific Reports.

[35]  Don Heiman,et al.  High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator. , 2014, Nature materials.

[36]  L. Molenkamp,et al.  Electronic structure and morphology of epitaxial Bi2Te2Se topological insulator films , 2014 .

[37]  R. Egdell,et al.  Observation of Distinct Bulk and Surface Chemical Environments in a Topological Insulator under Magnetic doping , 2014, 1408.2971.

[38]  R. Wiesendanger,et al.  Strong out-of-plane magnetic anisotropy of Fe adatoms on Bi 2 Te 3 , 2014, 1403.7621.

[39]  Y. Ferreirós,et al.  Domain wall motion in junctions of thin-film magnets and topological insulators , 2014 .

[40]  Q. Xue,et al.  Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator , 2013, Science.

[41]  W. Duan,et al.  Topology-Driven Magnetic Quantum Phase Transition in Topological Insulators , 2013, Science.

[42]  A. Kandala,et al.  Growth and Characterization of Hybrid Insulating Ferromagnet-Topological Insulator Heterostructure Devices , 2012, 1212.1225.

[43]  Thomas A. Lograsso,et al.  Weak Anti-localization and Quantum Oscillations of Surface States in Topological Insulator Bi2Se2Te , 2012, Scientific Reports.

[44]  Nitin Samarth,et al.  Hedgehog spin texture and Berry’s phase tuning in a magnetic topological insulator , 2012, Nature Physics.

[45]  Yoichi Ando,et al.  Tunable Dirac cone in the topological insulator Bi2-xSbxTe3-ySey , 2012, Nature Communications.

[46]  K. Kern,et al.  In-plane magnetic anisotropy of Fe atoms on Bi2Se3(111). , 2011, Physical review letters.

[47]  Q. Xue,et al.  Carrier-independent ferromagnetism and giant anomalous Hall effect in magnetic topological insulator , 2011, 1108.4754.

[48]  P. Roushan,et al.  Spatial Fluctuations of Helical Dirac Fermions on the Surface of Topological Insulators , 2011, 1108.2089.

[49]  L. Yashina,et al.  Tolerance of topological surface states towards magnetic moments: Fe on Bi2Se3. , 2011, Physical review letters.

[50]  T. Yokoyama Current-induced magnetization reversal on the surface of a topological insulator , 2011, 1107.0116.

[51]  S. Chu,et al.  Photoemission spectroscopy of magnetic and nonmagnetic impurities on the surface of the Bi2Se3 topological insulator. , 2011, Physical review letters.

[52]  Su-Yang Xu,et al.  A topological insulator surface under strong Coulomb, magnetic and disorder perturbations , 2011, 1103.3411.

[53]  Duane D. Johnson,et al.  Ternary tetradymite compounds as topological insulators , 2010, 1012.3974.

[54]  Z. K. Liu,et al.  Massive Dirac Fermion on the Surface of a Magnetically Doped Topological Insulator , 2010, Science.

[55]  N. Nagaosa,et al.  Electric charging of magnetic textures on the surface of a topological insulator , 2010, 1006.4217.

[56]  T. Yokoyama,et al.  Theoretical study of the dynamics of magnetization on the topological surface , 2010, 1003.3769.

[57]  Joel E Moore,et al.  The birth of topological insulators , 2010, Nature.

[58]  Haijun Zhang,et al.  Experimental Realization of a Three-Dimensional Topological Insulator, Bi2Te3 , 2009, Science.

[59]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[60]  Wei Zhang,et al.  Quantized Anomalous Hall Effect in Magnetic Topological Insulators , 2010, Science.

[61]  L. Fu Hexagonal warping effects in the surface states of the topological insulator Bi2Te3. , 2009, Physical review letters.

[62]  R. Cava,et al.  Observation of a large-gap topological-insulator class with a single Dirac cone on the surface , 2009 .

[63]  Xiao-Liang Qi,et al.  Magnetic impurities on the surface of a topological insulator. , 2008, Physical review letters.

[64]  X. Qi,et al.  Topological quantization of the spin Hall effect in two-dimensional paramagnetic semiconductors , 2005, cond-mat/0505308.

[65]  K. Kern,et al.  Giant Magnetic Anisotropy of Single Cobalt Atoms and Nanoparticles , 2003, Science.

[66]  J. Banister,et al.  Structure of Gd, Dy, and Er at Low Temperatures , 1954 .

[67]  K. Kokh,et al.  Topological Surface States with Persistent High Spin Polarization across the Dirac Point in Bi 2 Te 2 Se and Bi 2 Se , 2012 .