Versatile Particle-Based Route to Engineer Vertically Aligned Silicon Nanowire Arrays and Nanoscale Pores.

Control over particle self-assembly is a prerequisite for the colloidal templating of lithographical etching masks to define nanostructures. This work integrates and combines for the first time bottom-up and top-down approaches, namely, particle self-assembly at liquid-liquid interfaces and metal-assisted chemical etching, to generate vertically aligned silicon nanowire (VA-SiNW) arrays and, alternatively, arrays of nanoscale pores in a silicon wafer. Of particular importance, and in contrast to current techniques, including conventional colloidal lithography, this approach provides excellent control over the nanowire or pore etching site locations and decouples nanowire or pore diameter and spacing. The spacing between pores or nanowires is tuned by adjusting the specific area of the particles at the liquid-liquid interface before deposition. Hence, the process enables fast and low-cost fabrication of ordered nanostructures in silicon and can be easily scaled up. We demonstrate that the fabricated VA-SiNW arrays can be used as in vitro transfection platforms for transfecting human primary cells.

[1]  Charles M Lieber,et al.  Semiconductor nanowires , 2006 .

[2]  O. Velev,et al.  Dielectrophoretic assembly of oriented and switchable two-dimensional photonic crystals , 2003 .

[3]  Charles M. Lieber,et al.  A laser ablation method for the synthesis of crystalline semiconductor nanowires , 1998, Science.

[4]  P. Pieranski,et al.  Two-Dimensional Interfacial Colloidal Crystals , 1980 .

[5]  Wei Lu,et al.  TOPICAL REVIEW: Semiconductor nanowires , 2006 .

[6]  R. V. Duyne,et al.  Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces , 1995 .

[7]  Paul Steinvurzel,et al.  Multicolored vertical silicon nanowires. , 2011, Nano letters.

[8]  N. Voelcker,et al.  Surface-assisted laser desorption/ionization mass spectrometry using ordered silicon nanopillar arrays. , 2014, The Analyst.

[9]  Li Jia,et al.  Micropatterning by Non‐Densely Packed Interfacial Colloidal Crystals , 2007 .

[10]  Kuniaki Nagayama,et al.  Continuous Convective Assembling of Fine Particles into Two-Dimensional Arrays on Solid Surfaces , 1996 .

[11]  E. Reimhult,et al.  Selective (bio)functionalization of solid-state nanopores. , 2015, ACS applied materials & interfaces.

[12]  Thomas J. Macdonald,et al.  A quantum dot sensitized catalytic porous silicon photocathode , 2014 .

[13]  Nicolas H. Voelcker,et al.  Engineering vertically aligned semiconductor nanowire arrays for applications in the life sciences , 2014 .

[14]  M. Textor,et al.  Particle lithography from colloidal self-assembly at liquid-liquid interfaces. , 2010, ACS nano.

[15]  N. Voelcker,et al.  Dense arrays of uniform submicron pores in silicon and their applications. , 2015, ACS applied materials & interfaces.

[16]  K. L. Martinez,et al.  Exploring arrays of vertical one-dimensional nanostructures for cellular investigations , 2014, Nanotechnology.

[17]  B. Kasemo,et al.  Control of nanoparticle film structure for colloidal lithography , 2003 .

[18]  Mark Oksman,et al.  Knocking down highly-ordered large-scale nanowire arrays. , 2010, Nano letters.

[19]  Alexander Pevzner,et al.  Si nanowires forest-based on-chip biomolecular filtering, separation and preconcentration devices: nanowires do it all. , 2012, Nano letters.

[20]  E. Tasciotti,et al.  Biodegradable silicon nanoneedles delivering nucleic acids intracellularly induce localized in vivo neovascularization. , 2015, Nature materials.

[21]  Ciro Chiappini,et al.  Biodegradable nanoneedles for localized delivery of nanoparticles in vivo: exploring the biointerface. , 2015, ACS nano.

[22]  I. B. Ivanov,et al.  Mechanism of formation of two-dimensional crystals from latex particles on substrates , 1992 .

[23]  Zhipeng Huang,et al.  Metal‐Assisted Chemical Etching of Silicon: A Review , 2011, Advanced materials.

[24]  Hyunsung Park,et al.  Multispectral imaging with vertical silicon nanowires , 2013, Scientific Reports.

[25]  S. Kudera,et al.  Fabrication of porous silicon by metal-assisted etching using highly ordered gold nanoparticle arrays , 2012, Nanoscale Research Letters.

[26]  Nicolas H Voelcker,et al.  Porous silicon biosensors on the advance. , 2009, Trends in biotechnology.

[27]  Jacob T. Robinson,et al.  Vertical silicon nanowires as a universal platform for delivering biomolecules into living cells , 2010, Proceedings of the National Academy of Sciences.

[28]  Lars Samuelson,et al.  Failure of the vapor-liquid-solid mechanism in Au-assisted MOVPE growth of InAs nanowires. , 2005, Nano letters.

[29]  K. Suh,et al.  Designing nanotopographical density of extracellular matrix for controlled morphology and function of human mesenchymal stem cells , 2013, Scientific Reports.

[30]  Xin Wang,et al.  High-performance silicon nanohole solar cells. , 2010, Journal of the American Chemical Society.

[31]  P. Ajayan,et al.  Three-dimensionally engineered porous silicon electrodes for Li ion batteries. , 2012, Nano letters.

[32]  Ravi A. Desai,et al.  Mechanical regulation of cell function with geometrically modulated elastomeric substrates , 2010, Nature Methods.

[33]  A. Fery,et al.  Colloidal Surface Assemblies: Nanotechnology Meets Bioinspiration , 2013 .

[34]  M. Textor,et al.  From particle self-assembly to functionalized sub-micron protein patterns , 2008, Nanotechnology.

[35]  G. Siuzdak,et al.  Combined immunocapture and laser desorption/ionization mass spectrometry on porous silicon. , 2010, Analytical chemistry.

[36]  S. O. Lumsdon,et al.  Influence of Particle Wettability on the Type and Stability of Surfactant-Free Emulsions† , 2000 .

[37]  B. Rabie,et al.  Electroporation for Transfection and Differentiation of Dental Pulp Stem Cells , 2013, BioResearch open access.

[38]  N. Voelcker,et al.  Porous Silicon Nanodiscs for Targeted Drug Delivery , 2015 .

[39]  A. Plettl,et al.  Non‐Close‐Packed Crystals from Self‐Assembled Polystyrene Spheres by Isotropic Plasma Etching: Adding Flexibility to Colloid Lithography , 2009 .

[40]  Ke-Qin Zhang,et al.  In situ observation of colloidal monolayer nucleation driven by an alternating electric field , 2004, Nature.