Magnetic iron–manganese binary oxide supported on carbon nanofiber (Fe3−xMnxO4/CNF) for efficient removal of Hg0 from coal combustion flue gas

[1]  Junying Zhang,et al.  Mercury removal from flue gas by magnetospheres present in fly ash: Role of iron species and modification by HF , 2017 .

[2]  Junying Zhang,et al.  Integrated removal of NO and mercury from coal combustion flue gas using manganese oxides supported on TiO2. , 2017, Journal of environmental sciences.

[3]  H. Hsi,et al.  Multipollutant removal of Hg0/SO2/NO from simulated coal-combustion flue gases using metal oxide/mesoporous SiO2?composites. , 2017 .

[4]  Feng Liu,et al.  Mechanistic studies of mercury adsorption and oxidation by oxygen over spinel-type MnFe2O4. , 2017, Journal of hazardous materials.

[5]  Shijian Yang,et al.  Elemental Mercury Oxidation over Fe-Ti-Mn Spinel: Performance, Mechanism, and Reaction Kinetics. , 2017, Environmental science & technology.

[6]  Minghou Xu,et al.  Manganese doped CeO2-ZrO2 catalyst for elemental mercury oxidation at low temperature , 2016 .

[7]  Junying Zhang,et al.  Mercury Removal by Magnetic Biochar Derived from Simultaneous Activation and Magnetization of Sawdust. , 2016, Environmental science & technology.

[8]  Minghou Xu,et al.  Elemental mercury oxidation over manganese-based perovskite-type catalyst at low temperature , 2016 .

[9]  Junying Zhang,et al.  Removal of elemental mercury from flue gas by recyclable CuCl2 modified magnetospheres catalyst from fly ash. Part 1. Catalyst characterization and performance evaluation , 2016 .

[10]  Shijian Yang,et al.  The centralized control of elemental mercury emission from the flue gas by a magnetic rengenerable Fe-Ti-Mn spinel. , 2015, Journal of hazardous materials.

[11]  B. Shen,et al.  Simultaneous Removal of NO and Hg(0) from Flue Gas over Mn-Ce/Ti-PILCs. , 2015, Environmental science & technology.

[12]  G. Zeng,et al.  A review on oxidation of elemental mercury from coal-fired flue gas with selective catalytic reduction catalysts , 2015 .

[13]  Junying Zhang,et al.  Mercury Adsorption and Oxidation over Cobalt Oxide Loaded Magnetospheres Catalyst from Fly Ash in Oxyfuel Combustion Flue Gas. , 2015, Environmental science & technology.

[14]  Liqing Li,et al.  SCR atmosphere induced reduction of oxidized mercury over CuO-CeO2/TiO2 catalyst. , 2015, Environmental science & technology.

[15]  Y. Duan,et al.  Experimental and kinetic studies of gas-phase mercury adsorption by raw and bromine modified activated carbon , 2015 .

[16]  N. Yan,et al.  MnOx/Graphene for the Catalytic Oxidation and Adsorption of Elemental Mercury. , 2015, Environmental science & technology.

[17]  Minghou Xu,et al.  Increasing oxygen functional groups of activated carbon with non-thermal plasma to enhance mercury removal efficiency for flue gases , 2015 .

[18]  M. A. López-Antón,et al.  Influence of a CO2-enriched flue gas on mercury capture by activated carbons , 2015 .

[19]  Junying Zhang,et al.  Regenerable cobalt oxide loaded magnetosphere catalyst from fly ash for mercury removal in coal combustion flue gas. , 2014, Environmental science & technology.

[20]  Junying Zhang,et al.  Physical–chemical characteristics and elements enrichment of magnetospheres from coal fly ashes , 2014 .

[21]  Hongbo Zeng,et al.  Efficient removal of elemental mercury (Hg0) by SBA-15-Ag adsorbents , 2014 .

[22]  Jianhong Chen,et al.  Adsorption and oxidation of elemental mercury over Ce-MnOx/Ti-PILCs. , 2014, Environmental science & technology.

[23]  Jiming Hao,et al.  A review of atmospheric mercury emissions, pollution and control in China , 2014, Frontiers of Environmental Science & Engineering.

[24]  Marjorie A. Langell,et al.  XPS analysis of oleylamine/oleic acid capped Fe3O4 nanoparticles as a function of temperature , 2014 .

[25]  J. Wilcox,et al.  Mercury chemistry of brominated activated carbons – Packed-bed breakthrough experiments , 2014 .

[26]  J. Xiang,et al.  Cobalt manganese oxides modified titania catalysts for oxidation of elemental mercury at low flue gas temperature , 2014 .

[27]  Ping Liu,et al.  Novel regenerable sorbent based on Zr-Mn binary metal oxides for flue gas mercury retention and recovery. , 2013, Journal of hazardous materials.

[28]  M. A. López-Antón,et al.  Regenerable sorbents for mercury capture in simulated coal combustion flue gas. , 2013, Journal of hazardous materials.

[29]  M. Izquierdo,et al.  Influence of temperature and regeneration cycles on Hg capture and efficiency by structured Au/C regenerable sorbents. , 2013, Journal of hazardous materials.

[30]  N. Lu,et al.  Oxidation of Elemental Mercury by Active Species Generated From a Surface Dielectric Barrier Discharge Plasma Reactor , 2013, Plasma Chemistry and Plasma Processing.

[31]  H. Hsi,et al.  Influences of acidic/oxidizing gases on elemental mercury adsorption equilibrium and kinetics of sulfur-impregnated activated carbon , 2012 .

[32]  L. Lazăr,et al.  Oxidation Catalysts for Elemental Mercury in Flue Gases—A Review , 2012 .

[33]  C. Ruiz,et al.  Tail-end Hg capture on Au/carbon-monolith regenerable sorbents. , 2011, Journal of hazardous materials.

[34]  J. Jia,et al.  Elemental Mercury Capture from Flue Gas by Magnetic Mn–Fe Spinel: Effect of Chemical Heterogeneity , 2011 .

[35]  Y. Duan,et al.  Effect of Manganese Ions on the Structure of Ca(OH)2 and Mercury Adsorption Performance of Mnx+/Ca(OH)2 Composites , 2011 .

[36]  J. Jia,et al.  Nanosized cation-deficient Fe-Ti spinel: a novel magnetic sorbent for elemental mercury capture from flue gas. , 2011, ACS applied materials & interfaces.

[37]  J. Jia,et al.  Remarkable effect of the incorporation of titanium on the catalytic activity and SO2 poisoning resistance of magnetic Mn–Fe spinel for elemental mercury capture , 2011 .

[38]  Junying Zhang,et al.  Experimental study on fly ash capture mercury in flue gas , 2010 .

[39]  Junying Zhang,et al.  Study on mechanism of mercury oxidation by fly ash from coal combustion , 2010 .

[40]  Yufeng Duan,et al.  Experimental study on mercury transformation and removal in coal-fired boiler flue gases , 2009 .

[41]  Zhenghe Xu,et al.  Magnetic Multi‐Functional Nano Composites for Environmental Applications , 2009 .

[42]  Zhenghe Xu,et al.  Mercury removal from flue gases by novel regenerable magnetic nanocomposite sorbents. , 2009, Environmental science & technology.

[43]  C. Zheng,et al.  Theoretical study of different speciation of mercury adsorption on CaO (0 0 1) surface , 2009 .

[44]  Evan J Granite,et al.  The thief process for mercury removal from flue gas. , 2007, Journal of environmental management.

[45]  M. A. López-Antón,et al.  Mercury Retention by Fly Ashes from Coal Combustion: Influence of the Unburned Carbon Content , 2007 .

[46]  Henry W. Pennline,et al.  A technique to control mercury from flue gas: The Thief Process , 2006 .

[47]  J. Baek,et al.  Carbon-based novel sorbent for removing gas-phase mercury , 2006 .

[48]  C. Zygarlicke,et al.  Effects of NO, ?-FeO, ?-FeO, and HCl on mercury transformations in a 7-kW coal combustion system , 2004 .