POSITIVE GROUND STATE SOLUTION FOR KIRCHHOFF EQUATIONS WITH SUBCRITICAL GROWTH AND ZERO MASS

In this article, we study the Kirchhoff equation − “ a + b Z RN |∇u|dx ” ∆u = K(x)f(u), x ∈ R , u ∈ D(R ), where a > 0, b > 0 and N ≥ 3. Under suitable conditions on K and f , we obtain four existence results and two nonexistence results, using variational methods.

[1]  Hui Zhang,et al.  Ground states for the nonlinear Kirchhoff type problems , 2015 .

[2]  N. Ikoma Existence of ground state solutions to the nonlinear Kirchhoff type equations with potentials , 2014 .

[3]  Jianjun Nie,et al.  Existence and multiplicity of nontrivial solutions for a class of Schrödinger–Kirchhoff-type equations , 2014 .

[4]  Gongbao Li,et al.  Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in R3 , 2014 .

[5]  G. Figueiredo,et al.  Existence and Concentration Result for the Kirchhoff Type Equations with General Nonlinearities , 2014 .

[6]  Yisheng Huang,et al.  On a class of Kirchhoff type problems , 2014 .

[7]  Fuyi Li,et al.  Existence of positive solutions to Kirchhoff type problems with zero mass , 2014 .

[8]  Sihua Liang,et al.  Existence of multi-bump solutions for a class of Kirchhoff type problems in R3 , 2013 .

[9]  Fuyi Li,et al.  Existence of a positive solution to Kirchhoff type problems without compactness conditions , 2012 .

[10]  Antonio Azzollini,et al.  The elliptic Kirchhoff equation in $\mathbb R^N$ perturbed by a local nonlinearity , 2012, Differential and Integral Equations.

[11]  Xian Wu,et al.  Existence of nontrivial solutions and high energy solutions for Schrödinger–Kirchhoff-type equations in RN☆ , 2011 .

[12]  Marcelo M. Cavalcanti,et al.  Global existence and uniform decay rates for the Kirchhoff-Carrier equation with nonlinear dissipation , 2001, Advances in Differential Equations.

[13]  S. Spagnolo,et al.  Global solvability for the degenerate Kirchhoff equation with real analytic data , 1992 .

[14]  W. Rother,et al.  Nonlinear scalar field equations , 1992, Differential and Integral Equations.

[15]  Louis Jeanjean,et al.  On the existence of bounded Palais–Smale sequences and application to a Landesman–Lazer-type problem set on ℝN , 1999, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[16]  Stefano Panizzi,et al.  On the Well-Posedness of the Kirchhoff String , 1996 .

[17]  Jacques-Louis Lions,et al.  On Some Questions in Boundary Value Problems of Mathematical Physics , 1978 .

[18]  P. Gillis Sur une classe d'équations aux dérivées partielles , 1936 .