Neuronal microcircuits for decision making in C. elegans

[1]  G. Fraenkel Orientation of Animals , 1940 .

[2]  E. Kandel,et al.  ELECTROPHYSIOLOGY OF HIPPOCAMPAL NEURONS: IV. FAST PREPOTENTIALS. , 1961, Journal of neurophysiology.

[3]  D B Dusenbery,et al.  Countercurrent separation: a new method for studying behavior of small aquatic organisms. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[4]  R. Llinás,et al.  Electrotonic coupling between neurons in cat inferior olive. , 1974, Journal of neurophysiology.

[5]  J. Culotti,et al.  Osmotic avoidance defective mutants of the nematode Caenorhabditis elegans. , 1978, Genetics.

[6]  S. Brenner,et al.  The neural circuit for touch sensitivity in Caenorhabditis elegans , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[7]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[8]  H. Horvitz,et al.  A dual mechanosensory and chemosensory neuron in Caenorhabditis elegans. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Cornelia I Bargmann,et al.  Odorant-specific adaptation pathways generate olfactory plasticity in C. elegans , 1995, Neuron.

[10]  J. Kaplan,et al.  Synaptic code for sensory modalities revealed by C. elegans GLR-1 glutamate receptor , 1995, Nature.

[11]  S. R. Wicks,et al.  Integration of mechanosensory stimuli in Caenorhabditis elegans , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[12]  A. Fire,et al.  Genetically targeted cell disruption in Caenorhabditis elegans. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[13]  S. Lockery,et al.  Active Currents Regulate Sensitivity and Dynamic Range in C. elegans Neurons , 1998, Neuron.

[14]  M. Futai,et al.  Sensing of cadmium and copper ions by externally exposed ADL, ASE, and ASH neurons elicits avoidance response in Caenorhabditis elegans. , 1999, Neuroreport.

[15]  Michael L. Platt,et al.  Neural correlates of decision variables in parietal cortex , 1999, Nature.

[16]  N. Wittenburg,et al.  Thermal avoidance in Caenorhabditis elegans: an approach to the study of nociception. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[17]  A. V. Maricq,et al.  Neuronal Control of Locomotion in C. elegans Is Modified by a Dominant Mutation in the GLR-1 Ionotropic Glutamate Receptor , 1999, Neuron.

[18]  Thomas M. Morse,et al.  The Fundamental Role of Pirouettes in Caenorhabditis elegans Chemotaxis , 1999, The Journal of Neuroscience.

[19]  Rajesh Ranganathan,et al.  C. elegans Locomotory Rate Is Modulated by the Environment through a Dopaminergic Pathway and by Experience through a Serotonergic Pathway , 2000, Neuron.

[20]  D. Kahneman,et al.  Functional Imaging of Neural Responses to Expectancy and Experience of Monetary Gains and Losses tasks with monetary payoffs , 2001 .

[21]  M. Yamamoto,et al.  Plasticity of chemotaxis revealed by paired presentation of a chemoattractant and starvation in the nematode Caenorhabditis elegans. , 2001, The Journal of experimental biology.

[22]  Sham M. Kakade,et al.  Opponent interactions between serotonin and dopamine , 2002, Neural Networks.

[23]  P. Sengupta,et al.  Regulation of Body Size and Behavioral State of C. elegans by Sensory Perception and the EGL-4 cGMP-Dependent Protein Kinase , 2002, Neuron.

[24]  Aravinthan D. T. Samuel,et al.  Thermotaxis in Caenorhabditis elegans Analyzed by Measuring Responses to Defined Thermal Stimuli , 2002, The Journal of Neuroscience.

[25]  Cori Bargmann,et al.  Social feeding in Caenorhabditis elegans is induced by neurons that detect aversive stimuli , 2002, Nature.

[26]  O. Hobert,et al.  Functional mapping of neurons that control locomotory behavior in Caenorhabditis elegans. , 2003, Journal of neurobiology.

[27]  Beibei Zhao,et al.  Reversal Frequency in Caenorhabditis elegans Represents an Integrated Response to the State of the Animal and Its Environment , 2003, The Journal of Neuroscience.

[28]  David B. Dusenbery,et al.  Responses of the nematodeCaenorhabditis elegans to controlled chemical stimulation , 1980, Journal of comparative physiology.

[29]  A. V. Maricq,et al.  Dopamine and Glutamate Control Area-Restricted Search Behavior in Caenorhabditis elegans , 2004, The Journal of Neuroscience.

[30]  Ryuzo Shingai,et al.  Neurons regulating the duration of forward locomotion in Caenorhabditis elegans , 2004, Neuroscience Research.

[31]  J. Bettinger,et al.  Natural Variation in the npr-1 Gene Modifies Ethanol Responses of Wild Strains of C. elegans , 2004, Neuron.

[32]  S. Lockery,et al.  Step-Response Analysis of Chemotaxis in Caenorhabditis elegans , 2003, The Journal of Neuroscience.

[33]  Cornelia I. Bargmann,et al.  Pathogenic bacteria induce aversive olfactory learning in Caenorhabditis elegans , 2005, Nature.

[34]  Cori Bargmann,et al.  A circuit for navigation in Caenorhabditis elegans , 2005 .

[35]  Mario de Bono,et al.  Experience-Dependent Modulation of C. elegans Behavior by Ambient Oxygen , 2005, Current Biology.

[36]  E. Bamberg,et al.  Light Activation of Channelrhodopsin-2 in Excitable Cells of Caenorhabditis elegans Triggers Rapid Behavioral Responses , 2005, Current Biology.

[37]  S. Lockery,et al.  The awake behaving worm: simultaneous imaging of neuronal activity and behavior in intact animals at millimeter scale. , 2006, Journal of neurophysiology.

[38]  Leon Avery,et al.  Dietary choice behavior in Caenorhabditis elegans , 2006, Journal of Experimental Biology.

[39]  R. Kerr,et al.  Intracellular Ca2+ imaging in C. elegans. , 2006, Methods in molecular biology.

[40]  Cori Bargmann Chemosensation in C. elegans. , 2006, WormBook : the online review of C. elegans biology.

[41]  Mario de Bono,et al.  Behavioral Motifs and Neural Pathways Coordinating O2 Responses and Aggregation in C. elegans , 2006, Current Biology.

[42]  Sreekanth H. Chalasani,et al.  Dissecting a circuit for olfactory behaviour in Caenorhabditis elegans , 2007, Nature.

[43]  Takeshi Ishihara,et al.  Caenorhabditis elegans Integrates the Signals of Butanone and Food to Enhance Chemotaxis to Butanone , 2007, The Journal of Neuroscience.

[44]  Douglas S. Portman,et al.  Neural Sex Modifies the Function of a C. elegans Sensory Circuit , 2007, Current Biology.

[45]  Aravinthan D. T. Samuel,et al.  Neural Circuits Mediate Electrosensory Behavior in Caenorhabditis elegans , 2007, The Journal of Neuroscience.

[46]  Cori Bargmann,et al.  Microfluidics for in vivo imaging of neuronal and behavioral activity in Caenorhabditis elegans , 2007, Nature Methods.

[47]  Colin Camerer,et al.  A framework for studying the neurobiology of value-based decision making , 2008, Nature Reviews Neuroscience.

[48]  Ryuzo Shingai,et al.  Phase-dependent preference of thermosensation and chemosensation during simultaneous presentation assay in Caenorhabditis elegans , 2008, BMC Neuroscience.

[49]  Zhaoyang Feng,et al.  Light-sensitive neurons and channels mediate phototaxis in C. elegans , 2008, Nature Neuroscience.

[50]  Aravinthan D. T. Samuel,et al.  An olfactory neuron responds stochastically to temperature and modulates Caenorhabditis elegans thermotactic behavior , 2008, Proceedings of the National Academy of Sciences.

[51]  S. Lockery,et al.  Functional asymmetry in Caenorhabditis elegans taste neurons and its computational role in chemotaxis , 2008, Nature.

[52]  Mario de Bono,et al.  A carbon dioxide avoidance behavior is integrated with responses to ambient oxygen and food in Caenorhabditis elegans , 2008, Proceedings of the National Academy of Sciences.

[53]  Koutarou D. Kimura,et al.  Temperature Sensing by an Olfactory Neuron in a Circuit Controlling Behavior of C. elegans , 2008, Science.

[54]  Sreekanth H. Chalasani,et al.  A Behavioral Switch: cGMP and PKC Signaling in Olfactory Neurons Reverses Odor Preference in C. elegans , 2008, Neuron.

[55]  S. Lockery,et al.  The Neural Network for Chemotaxis to Tastants in Caenorhabditis elegans Is Specialized for Temporal Differentiation , 2009, The Journal of Neuroscience.

[56]  Kazushi Yoshida,et al.  Parallel Use of Two Behavioral Mechanisms for Chemotaxis in Caenorhabditis elegans , 2009, The Journal of Neuroscience.

[57]  Evan Z. Macosko,et al.  A Hub-and-Spoke Circuit Drives Pheromone Attraction and Social Behavior in C. elegans , 2009, Nature.

[58]  J. Ahnn,et al.  C. elegans behavior of preference choice on bacterial food , 2009, Molecules and cells.

[59]  Sharad Ramanathan,et al.  Optical interrogation of neural circuits in Caenorhabditis elegans , 2009, Nature Methods.

[60]  E. Jorgensen,et al.  Graded synaptic transmission at the Caenorhabditis elegans neuromuscular junction , 2009, Proceedings of the National Academy of Sciences.

[61]  W. Schultz Midbrain Dopamine Neurons , 2009 .

[62]  Cornelia I. Bargmann,et al.  Neuropeptide feedback modifies odor-evoked dynamics in C. elegans olfactory neurons , 2010, Nature Neuroscience.

[63]  Evan L Ardiel,et al.  An elegant mind: learning and memory in Caenorhabditis elegans. , 2010, Learning & memory.

[64]  William R. Schafer,et al.  utomated imaging of neuronal activity in freely behaving Caenorhabditis elegans uliette , 2010 .

[65]  Michael J. O'Donovan,et al.  Motoneurons Dedicated to Either Forward or Backward Locomotion in the Nematode Caenorhabditis elegans , 2010, The Journal of Neuroscience.

[66]  Aravinthan D. T. Samuel,et al.  Optogenetic manipulation of neural activity in freely moving Caenorhabditis elegans , 2011, Nature Methods.

[67]  Jacob G. Bernstein,et al.  Optogenetic tools for analyzing the neural circuits of behavior , 2011, Trends in Cognitive Sciences.

[68]  S. Oda,et al.  Neuronal plasticity regulated by the insulin-like signaling pathway underlies salt chemotaxis learning in Caenorhabditis elegans. , 2011, Journal of neurophysiology.

[69]  Bryn E. Gaertner,et al.  Microfluidic Devices for Analysis of Spatial Orientation Behaviors in Semi-Restrained Caenorhabditis elegans , 2011, PloS one.

[70]  Cori Bargmann,et al.  Behavioral Choice between Conflicting Alternatives Is Regulated by a Receptor Guanylyl Cyclase, GCY-28, and a Receptor Tyrosine Kinase, SCD-2, in AIA Interneurons of Caenorhabditis elegans , 2011, The Journal of Neuroscience.

[71]  W. Schafer,et al.  Lateral Facilitation between Primary Mechanosensory Neurons Controls Nose Touch Perception in C. elegans , 2011, Neuron.

[72]  Christian Braendle,et al.  A phylogeny and molecular barcodes for Caenorhabditis, with numerous new species from rotting fruits , 2011, BMC Evolutionary Biology.

[73]  Zhaoyang Feng,et al.  The Neural Circuits and Synaptic Mechanisms Underlying Motor Initiation in C. elegans , 2011, Cell.

[74]  Cori Bargmann,et al.  High-content behavioral analysis of Caenorhabditis elegans in precise spatiotemporal chemical environments , 2011, Nature Methods.

[75]  Lav R. Varshney,et al.  Structural Properties of the Caenorhabditis elegans Neuronal Network , 2009, PLoS Comput. Biol..

[76]  S. Lockery,et al.  Optogenetic analysis of synaptic transmission in the central nervous system of the nematode Caenorhabditis elegans. , 2011, Nature communications.

[77]  M. de Bono,et al.  Temperature, Oxygen, and Salt-Sensing Neurons in C. elegans Are Carbon Dioxide Sensors that Control Avoidance Behavior , 2011, Neuron.

[78]  William S. Ryu,et al.  An Imbalancing Act: Gap Junctions Reduce the Backward Motor Circuit Activity to Bias C. elegans for Forward Locomotion , 2011, Neuron.

[79]  S. Lockery,et al.  An Image-Free Opto-Mechanical System for Creating Virtual Environments and Imaging Neuronal Activity in Freely Moving Caenorhabditis elegans , 2011, PloS one.

[80]  M. de Bono,et al.  Neuronal and molecular substrates for optimal foraging in Caenorhabditis elegans , 2011, Proceedings of the National Academy of Sciences.

[81]  William B Kristan,et al.  Contextual modulation of behavioral choice , 2011, Current Opinion in Neurobiology.

[82]  Matthew M. Crane,et al.  Real-time multimodal optical control of neurons and muscles in freely-behaving Caenorhabditis elegans , 2011, Nature Methods.

[83]  H. Yin,et al.  Motivational State and Reward Content Determine Choice Behavior under Risk in Mice , 2011, PloS one.

[84]  Leonid Kruglyak,et al.  Catecholamine receptor polymorphisms affect decision-making in C. elegans , 2011, Nature.

[85]  Anne E Carpenter,et al.  Neuron-type specific signals for reward and punishment in the ventral tegmental area , 2011, Nature.

[86]  Zhaoyang Feng,et al.  Calcium imaging of multiple neurons in freely behaving C. elegans , 2012, Journal of Neuroscience Methods.