Spectral irradiance effects on the outdoor performance of photovoltaic modules

The outdoor performance of photovoltaic modules is influenced by spectrum. Even if the irradiance level and the operating temperature is the same, performance difference of photovoltaic modules between the seasons can be increase up to 15% depending on the photovoltaic module type. In this paper, seasonal spectral irradiance effects on the outdoor photovoltaic module performance and previous studies has been summarised thoroughly. The spectrum indicators which are used for spectra characteristics, Useful Fraction and Average Photon Energy are described in detail. This study also indicates spectrum effects on PV performance and outlines the present studies investigating this effect.

[1]  Jef Poortmans,et al.  Thin Film Solar Cells: Fabrication, Characterization and Applications , 2006 .

[2]  Christian N. Jardine,et al.  PV-COMPARE: Direct Comparison of Eleven PV Technologies at Two Locations in Northern and Southern Europe , 2001 .

[3]  W. Beckman,et al.  Solar Engineering of Thermal Processes , 1985 .

[4]  R. Gottschalg,et al.  Seasonal performance of a-Si single- and multijunction modules in two locations , 2005, Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, 2005..

[5]  E. V. Dyk,et al.  Effects of spectral variation on the device performance of copper indium diselenide and multi-crystalline silicon photovoltaic modules , 2011 .

[6]  Takashi Minemoto,et al.  Seasonal variation analysis of the outdoor performance of amorphous Si photovoltaic modules using the contour map , 2009 .

[7]  Thomas R. Betts,et al.  Investigation of photovoltaic device operation under varying spectral conditions , 2004 .

[8]  Gustavo Nofuentes,et al.  Characterization of degradation and evaluation of model parameters of amorphous silicon photovoltaic modules under outdoor long term exposure , 2016 .

[9]  Takashi Minemoto,et al.  Evaluation of the impact of solar spectrum and temperature variations on output power of silicon-based photovoltaic modules , 2006 .

[10]  Seddik Bacha,et al.  Forecasting photovoltaic array power production subject to mismatch losses , 2010 .

[11]  Abdessamad Kobi,et al.  Degradations of silicon photovoltaic modules: A literature review , 2013 .

[12]  N. Ravindra,et al.  Temperature dependence of solar cell performance—an analysis , 2012 .

[13]  Masakatsu Ikisawa,et al.  Outdoor exposure tests of photovoltaic modules in Japan and overseas , 1998 .

[14]  Harald Müllejans,et al.  Performance of Thin Film PV Modules , 2006 .

[15]  F. Chenlo,et al.  Experimental solar spectral irradiance until 2500 nm: results and influence on the PV conversion of different materials , 2007 .

[16]  J. I. Rosell,et al.  Modelling power output in photovoltaic modules for outdoor operating conditions , 2006 .

[17]  H. Beyer,et al.  Mapping the performance of PV modules, effects of module type and data averaging , 2010 .

[18]  M. J. Kearney,et al.  Experimental study of variations of the solar spectrum of relevance to thin film solar cells , 2003 .

[19]  Harald Müllejans,et al.  Comparison of indoor and outdoor performance measurements of recent commercially available solar modules , 2008 .

[20]  K. Otani,et al.  Solar spectral influence on the performance of photovoltaic (PV) modules under fine weather and cloudy weather conditions , 2011 .

[21]  M. Green Solar Cells : Operating Principles, Technology and System Applications , 1981 .

[22]  Llanos Mora-López,et al.  Analysis and characterization of photovoltaic modules of three different thin-film technologies in outdoor conditions , 2016 .

[23]  Antonio Luque,et al.  Handbook of photovoltaic science and engineering , 2011 .

[24]  Henrik Zsiborács,et al.  Technical and economic effects of cooling of monocrystalline photovoltaic modules under Hungarian conditions , 2016 .

[25]  N. Reich,et al.  The Effect of a Varying Solar Spectrum on the Energy Performance of Solar Cells , 2007 .

[26]  Y. Hishikawa,et al.  Translation Equations for Temperature and Irradiance of the I-V Curves of Various PV Cells and Modules , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[27]  Llanos Mora-López,et al.  Photovoltaic module simulation by neural networks using solar spectral distribution , 2013 .

[28]  B. Marion,et al.  Current–voltage curve translation by bilinear interpolation , 2004 .

[29]  G. Makrides,et al.  Temperature and thermal annealing effects on different photovoltaic technologies , 2012 .

[30]  Alain K. Tossa,et al.  Energy performance of different silicon photovoltaic technologies under hot and harsh climate , 2016 .

[31]  Mohammed Sadok,et al.  Outdoor testing of photovoltaic arrays in the Saharan region , 2008 .

[32]  Y. Hirata,et al.  Output variation of photovoltaic modules with environmental factors—I. The effect of spectral solar radiation on photovoltaic module output , 1995 .

[33]  Nipon Ketjoy,et al.  Impact of spectral irradiance distribution on the outdoor performance of photovoltaic system under Thai climatic conditions , 2012 .

[34]  F. Bandou,et al.  Evaluation performance of photovoltaic modules after a long time operation in Saharan environment , 2015 .

[35]  Sukruedee Sukchai,et al.  Investigation on Temperature Coefficients of Three Types Photovoltaic Module Technologies under Thailand Operating Condition , 2012 .

[36]  Keith Emery,et al.  Spectral effects on PV-device rating , 1992 .

[37]  Raya Mertens,et al.  Physics, technology, and use of photovoltaics , 1986 .

[38]  Takashi Minemoto,et al.  Analysis of the temperature history of amorphous silicon photovoltaic module outdoors , 2009 .

[39]  E. Skoplaki,et al.  ON THE TEMPERATURE DEPENDENCE OF PHOTOVOLTAIC MODULE ELECTRICAL PERFORMANCE: A REVIEW OF EFFICIENCY/ POWER CORRELATIONS , 2009 .

[40]  T. Sawada,et al.  Optimization of Device Design for Thin-Film Stacked Tandem Solar Modules in Terms of Outdoor Performance , 2004 .

[41]  Joe-Air Jiang,et al.  Analysis of the junction temperature and thermal characteristics of photovoltaic modules under various operation conditions , 2012 .

[42]  S. Kurtz,et al.  The influence of spectral solar irradiance variations on the performance of selected single-junction and multijunction solar cells , 1991 .

[43]  Thomas R. Betts,et al.  A critical appraisal of the factors affecting energy production from amorphous silicon photovoltaic arrays in a maritime climate , 2004 .

[44]  Akio Kitamura,et al.  Long-Term Performance Modelling of Amorphous Silicon Photovoltaic Module , 1997 .

[45]  C. E. Okeke,et al.  Effect of clearness index on the optimum efficiency of an array of silicon solar cells , 1990 .

[46]  G. Peharz,et al.  Energy harvesting efficiency of III-V triple-junction concentrator solar cells under realistic spectral conditions , 2010 .

[47]  Kosuke Kurokawa,et al.  Investigation to estimate the short circuit current by applying the solar spectrum , 2008 .

[48]  Y. Hamakawa,et al.  Effect of atmospheric parameters on solar cell performance under global irradiance , 1986 .

[49]  Nirmal-Kumar C. Nair,et al.  Global progress in photovoltaic technologies and the scenario of development of solar panel plant and module performance estimation − Application in Nigeria , 2015 .

[50]  Takashi Minemoto,et al.  Difference in the outdoor performance of bulk and thin-film silicon-based photovoltaic modules , 2009 .

[51]  Ewa Klugmann-Radziemska,et al.  Degradation of electrical performance of a crystalline photovoltaic module due to dust deposition in northern Poland , 2015 .

[52]  Kamaruzzaman Sopian,et al.  A review on the role of materials science in solar cells , 2012 .

[53]  Thomas R. Betts,et al.  Modelling long-term module performance based on realistic reporting conditions with consideration to spectral effects , 2003, 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of.

[54]  J. Ha,et al.  Long-Term Sequential Testing for Photovoltaic Modules , 2011 .

[55]  Saad Mekhilef,et al.  Effect of dust, humidity and air velocity on efficiency of photovoltaic cells , 2012 .

[56]  Jill Adelstein,et al.  Performance and reliability of a 1-kW amorphous silicon photovoltaic roofing system , 2005, Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, 2005..

[57]  Cristina Cornaro,et al.  Full characterization of photovoltaic modules in real operating conditions: theoretical model, measurement method and results , 2015 .

[58]  Wei Zhou,et al.  A novel model for photovoltaic array performance prediction , 2007 .

[59]  Cristina Cornaro,et al.  Influence of Average Photon Energy index on solar irradiance characteristics and outdoor performance of photovoltaic modules , 2012 .

[60]  M. J. Kearney,et al.  The effect of spectral variations on the performance parameters of single and double junction amorphous silicon solar cells , 2005 .

[61]  Bill Marion,et al.  Analysis of measured photovoltaic module performance for Florida, Oregon, and Colorado locations , 2014 .

[62]  B. Marion A method for modeling the current–voltage curve of a PV module for outdoor conditions , 2002 .

[63]  M. C. Gonzalez,et al.  Solar cells efficiency variations with varying atmospheric conditions , 1994 .

[64]  Ricardo Rüther,et al.  Spectral effects on amorphous silicon solar module fill factors , 2002 .

[65]  Thomas R. Betts,et al.  On the importance of considering the incident spectrum when measuring the outdoor performance of amorphous silicon photovoltaic devices , 2004 .

[66]  Christian N. Jardine PV-COMPARE: RELATIVE PERFORMANCE OF PHTOVOLTAIC TECHNOLOGIES IN NORTHERN AND SOUTHERN EUROPE , 2002 .

[67]  W. Knaupp Power rating of photovoltaic modules from outdoor measurements , 1991, The Conference Record of the Twenty-Second IEEE Photovoltaic Specialists Conference - 1991.

[68]  R. Mueller The calculated influence of atmospheric conditions on solar cell ISC under direct and global solar irradiances , 1987 .

[69]  Alain K. Tossa,et al.  A new approach to estimate the performance and energy productivity of photovoltaic modules in real operating conditions , 2014 .

[70]  S. K. Tyagi,et al.  Recent advances in solar photovoltaic systems for emerging trends and advanced applications , 2016 .