EMA Recommendation for the Pediatric Indications of Plerixafor (Mozobil) to Enhance Mobilization of Hematopoietic Stem Cells for Collection and Subsequent Autologous Transplantation in Children with Lymphoma or Malignant Solid Tumors.

On March 28, 2019, the Committee for Medicinal Products for Human Use adopted a positive opinion recommending the marketing authorization for the medicinal product plerixafor. The marketing authorization holder for this medicinal product is Genzyme Europe B.Th. The adoption was for an extension of the existing adult indication in combination with granulocyte colony-stimulating factor (G-CSF) to pediatric patients (aged 1 year to <18 years) to enhance mobilization of hematopoietic stem cells to the peripheral blood for collection and subsequent autologous transplantation in children with lymphoma or solid malignant tumors. This treatment is indicated either preemptively, when circulating stem cell count on the predicted day of collection after adequate mobilization with G-CSF (with or without chemotherapy) is expected to be insufficient with regard to desired hematopoietic stem cells yield, or in children who previously failed to collect sufficient hematopoietic stem cells. The efficacy and safety of plerixafor were evaluated in an open label, multicenter, phase I/II, dose-ranging, and randomized controlled study (DFI12860) in pediatric patients with solid tumors, including neuroblastoma, sarcoma, Ewing sarcoma, or lymphoma, who were eligible for autologous hematopoietic stem cell transplantation. Forty-five patients (aged 1 year to <18 years) were randomized, 2:1, using 0.24 mg/kg of plerixafor plus standard mobilization (G-CSF with or without chemotherapy) versus control (standard mobilization alone). The primary analysis showed that 80% of patients in the plerixafor arm experienced at least a doubling of the peripheral blood (PB) CD34+ count, observed from the morning of the day preceding the first planned apheresis to the morning prior to apheresis, versus 28.6% of patients in the control arm (p = .0019). The median increase in PB CD34+ cell counts from baseline to the day of apheresis was 3.2-fold in the plerixafor arm versus by 1.4-fold in the control arm. The observed safety profile in the pediatric population was consistent with that in adults, with adverse events mainly related to injection site reactions, hypokalemia, and increased blood bicarbonate. Importantly, plerixafor exposure did not seem to negatively affect transplant efficiency. This article summarizes the scientific review of the application leading to regulatory approval in the European Union. IMPLICATIONS FOR PRACTICE: This review of the marketing authorization of plerixafor will raise awareness of pediatric indication granted for this medicinal product.

[1]  O. Kollet,et al.  The multiple roles of osteoclasts in host defense: bone remodeling and hematopoietic stem cell mobilization. , 2007, Annual review of immunology.

[2]  D. Scadden,et al.  The hematopoietic stem cell in its place , 2006, Nature Immunology.

[3]  A. Trumpp,et al.  Bone-marrow haematopoietic-stem-cell niches , 2006, Nature Reviews Immunology.

[4]  H. Broxmeyer,et al.  Modulation of Hematopoietic Stem Cell Homing and Engraftment by CD26 , 2004, Science.

[5]  H. Broxmeyer,et al.  Stromal cell‐derived factor‐1/CXCL12 directly enhances survival/antiapoptosis of myeloid progenitor cells through CXCR4 and Gαi proteins and enhances engraftment of competitive, repopulating stem cells , 2003, Journal of leukocyte biology.

[6]  H. Broxmeyer,et al.  Transgenic Expression of Stromal Cell-Derived Factor-1/CXC Chemokine Ligand 12 Enhances Myeloid Progenitor Cell Survival/Antiapoptosis In Vitro in Response to Growth Factor Withdrawal and Enhances Myelopoiesis In Vivo , 2003, The Journal of Immunology.

[7]  O. Kollet,et al.  The essential roles of the chemokine SDF-1 and its receptor CXCR4 in human stem cell homing and repopulation of transplanted immune-deficient NOD/SCID and NOD/SCID/B2mnull mice , 2002, Leukemia.

[8]  R. Taichman,et al.  G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4 , 2002, Nature Immunology.

[9]  Irving L. Weissman,et al.  Hematopoietic Stem Cells Are Uniquely Selective in Their Migratory Response to Chemokines , 2002, The Journal of experimental medicine.

[10]  S. Rafii,et al.  Plasma elevation of stromal cell-derived factor-1 induces mobilization of mature and immature hematopoietic progenitor and stem cells. , 2001, Blood.

[11]  D. Scadden,et al.  CXCR-4 Desensitization Is Associated with Tissue Localization of Hemopoietic Progenitor Cells1 , 2001, The Journal of Immunology.

[12]  A. Spradling,et al.  A niche maintaining germ line stem cells in the Drosophila ovary. , 2000, Science.

[13]  A. Kiger,et al.  Somatic support cells restrict germline stem cell self-renewal and promote differentiation , 2000, Nature.

[14]  R. Alon,et al.  Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. , 1999, Science.

[15]  T. Springer,et al.  The Chemokine SDF-1 Is a Chemoattractant for Human CD34+ Hematopoietic Progenitor Cells and Provides a New Mechanism to Explain the Mobilization of CD34+ Progenitors to Peripheral Blood , 1997, The Journal of experimental medicine.

[16]  L. C. Trajman Stem Cell Mobilization Protocols : Filgrastim vs . Mozobil , 2016 .

[17]  J. Dipersio,et al.  Mobilization of hematopoietic stem and progenitor cells using inhibitors of CXCR4 and VLA-4 , 2012, Leukemia.

[18]  Hugues Lortat-Jacob,et al.  Sulfated polysaccharides increase plasma levels of SDF-1 in monkeys and mice: involvement in mobilization of stem/progenitor cells. , 2002, Blood.

[19]  S. Rafii,et al.  Chemotaxis of primitive hematopoietic cells in response to stromal cell-derived factor-1. , 2000, The Journal of clinical investigation.

[20]  H. Broxmeyer,et al.  In vitro behavior of hematopoietic progenitor cells under the influence of chemoattractants: stromal cell-derived factor-1, steel factor, and the bone marrow environment. , 1998, Blood.