Diffusion Independent Semi-Bandit Influence Maximization

We consider \emph{influence maximization} (IM) in social networks, which is the problem of maximizing the number of users that become aware of a product by selecting a set of "seed" users to expose the product to. While prior work assumes a known model of information diffusion, we propose a parametrization in terms of pairwise reachability which makes our framework agnostic to the underlying diffusion model. We give a corresponding monotone, submodular surrogate function, and show that it is a good approximation to the original IM objective. We also consider the case of a new marketer looking to exploit an existing social network, while simultaneously learning the factors governing information propagation. For this, we propose a pairwise-influence semi-bandit feedback model and develop a LinUCB-based bandit algorithm. Our model-independent regret analysis shows that our bound on the cumulative regret has a better (as compared to previous work) dependence on the size of the network. By using the graph Laplacian eigenbasis to construct features, we describe a practical LinUCB implementation. Experimental evaluation suggests that our framework is robust to the underlying diffusion model and can efficiently learn a near-optimal solution.

[1]  Éva Tardos,et al.  Maximizing the Spread of Influence through a Social Network , 2015, Theory Comput..

[2]  Branislav Kveton,et al.  Efficient Learning in Large-Scale Combinatorial Semi-Bandits , 2014, ICML.

[3]  Dacheng Tao,et al.  Networked bandits with disjoint linear payoffs , 2014, KDD.

[4]  Reynold Cheng,et al.  Online Influence Maximization , 2015, KDD.

[5]  Masahiro Kimura,et al.  Prediction of Information Diffusion Probabilities for Independent Cascade Model , 2008, KES.

[6]  Wei Chen,et al.  Efficient influence maximization in social networks , 2009, KDD.

[7]  Laks V. S. Lakshmanan,et al.  Influence Maximization with Bandits , 2015, ArXiv.

[8]  Zheng Wen,et al.  Influence Maximization with Semi-Bandit Feedback , 2016, ArXiv.

[9]  Rémi Munos,et al.  Spectral Bandits for Smooth Graph Functions , 2014, ICML.

[10]  Claudio Gentile,et al.  A Gang of Bandits , 2013, NIPS.

[11]  Thomas P. Hayes,et al.  Stochastic Linear Optimization under Bandit Feedback , 2008, COLT.

[12]  Steven Skiena,et al.  DeepWalk: online learning of social representations , 2014, KDD.

[13]  Mikhail Belkin,et al.  Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples , 2006, J. Mach. Learn. Res..

[14]  M. L. Fisher,et al.  An analysis of approximations for maximizing submodular set functions—I , 1978, Math. Program..

[15]  Xiaokui Xiao,et al.  Influence maximization: near-optimal time complexity meets practical efficiency , 2014, SIGMOD Conference.

[16]  Michel Minoux,et al.  Accelerated greedy algorithms for maximizing submodular set functions , 1978 .

[17]  Xiaokui Xiao,et al.  Influence Maximization in Near-Linear Time: A Martingale Approach , 2015, SIGMOD Conference.

[18]  Shuai Li,et al.  Online Clustering of Bandits , 2014, ICML.

[19]  Andreas Krause,et al.  Submodular Function Maximization , 2014, Tractability.

[20]  Charles A. Micchelli,et al.  Learning Multiple Tasks with Kernel Methods , 2005, J. Mach. Learn. Res..

[21]  Nicola Barbieri,et al.  Topic-Aware Social Influence Propagation Models , 2012, ICDM.

[22]  Michal Valko,et al.  Revealing Graph Bandits for Maximizing Local Influence , 2016, AISTATS.

[23]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[24]  Christos Faloutsos,et al.  Kronecker Graphs: An Approach to Modeling Networks , 2008, J. Mach. Learn. Res..

[25]  Zheng Wen,et al.  Tight Regret Bounds for Stochastic Combinatorial Semi-Bandits , 2014, AISTATS.

[26]  Sujay Sanghavi,et al.  Learning the graph of epidemic cascades , 2012, SIGMETRICS '12.

[27]  Jure Leskovec,et al.  node2vec: Scalable Feature Learning for Networks , 2016, KDD.

[28]  Laks V. S. Lakshmanan,et al.  Learning influence probabilities in social networks , 2010, WSDM '10.

[29]  Yajun Wang,et al.  Combinatorial Multi-Armed Bandit and Its Extension to Probabilistically Triggered Arms , 2014, J. Mach. Learn. Res..

[30]  Jure Leskovec,et al.  {SNAP Datasets}: {Stanford} Large Network Dataset Collection , 2014 .

[31]  Laks V. S. Lakshmanan,et al.  A Data-Based Approach to Social Influence Maximization , 2011, Proc. VLDB Endow..

[32]  Le Song,et al.  Influence Function Learning in Information Diffusion Networks , 2014, ICML.

[33]  Laks V. S. Lakshmanan,et al.  SIMPATH: An Efficient Algorithm for Influence Maximization under the Linear Threshold Model , 2011, 2011 IEEE 11th International Conference on Data Mining.

[34]  Csaba Szepesvári,et al.  Improved Algorithms for Linear Stochastic Bandits , 2011, NIPS.