Solvent-assisted programming of flat polymer sheets into reconfigurable and self-healing 3D structures

[1]  A. Domb,et al.  Cationic antimicrobial copolymer poly (methylmethacrylate‐co‐PHMG) decontaminates water , 2017 .

[2]  Adebola Oyefusi,et al.  Reprogrammable Chemical 3D Shaping for Origami, Kirigami, and Reconfigurable Molding. , 2017, Angewandte Chemie.

[3]  C. Bowman,et al.  Photoinduced Plasticity in Cross‐Linked Liquid Crystalline Networks , 2017, Advanced materials.

[4]  Yen Wei,et al.  Polydopamine nanoparticles doped in liquid crystal elastomers for producing dynamic 3D structures , 2017 .

[5]  Lei Tao,et al.  Carbon nanotube–vitrimer composite for facile and efficient photo-welding of epoxy , 2014 .

[6]  E. Terentjev,et al.  Vitrification and plastic flow in transient elastomer networks , 2016 .

[7]  Chao Yuan,et al.  Multi-shape active composites by 3D printing of digital shape memory polymers , 2016, Scientific Reports.

[8]  Yen Wei,et al.  Polydopamine coated shape memory polymer: enabling light triggered shape recovery, light controlled shape reprogramming and surface functionalization† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc00584e , 2016, Chemical science.

[9]  Yen Wei,et al.  Making and Remaking Dynamic 3D Structures by Shining Light on Flat Liquid Crystalline Vitrimer Films without a Mold. , 2016, Journal of the American Chemical Society.

[10]  E. Terentjev,et al.  Stress Relaxation, Dynamics, and Plasticity of Transient Polymer Networks , 2016, 1602.00840.

[11]  F. D. Du Prez,et al.  Vitrimers: permanent organic networks with glass-like fluidity , 2015, Chemical science.

[12]  M. Dickey,et al.  “2D or not 2D”: Shape-programming polymer sheets , 2016 .

[13]  Maenghyo Cho,et al.  Sequential Folding using Light-activated Polystyrene Sheet , 2015, Scientific Reports.

[14]  Hongzhi Wang,et al.  Origami-inspired active graphene-based paper for programmable instant self-folding walking devices , 2015, Science Advances.

[15]  Samantha P. Roberts,et al.  Graphene kirigami , 2015, Nature.

[16]  Zewen Liu,et al.  Self-folding graphene-polymer bilayers , 2015 .

[17]  Liang-Yin Chu,et al.  Poly(N‐isopropylacrylamide)‐Clay Nanocomposite Hydrogels with Responsive Bending Property as Temperature‐Controlled Manipulators , 2015 .

[18]  T. White,et al.  Voxelated liquid crystal elastomers , 2015, Science.

[19]  Ha Uk Chung,et al.  Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling , 2015, Science.

[20]  B. Mazzolai,et al.  Toward a New Generation of Electrically Controllable Hygromorphic Soft Actuators , 2015, Advanced materials.

[21]  C. Zorman,et al.  Transfer printing of self-folding polymer-metal bilayer particles. , 2014, ACS applied materials & interfaces.

[22]  R. Vaia,et al.  Shape‐Reprogrammable Polymers: Encoding, Erasing, and Re‐Encoding , 2014, Advanced materials.

[23]  Thomas C. Hull,et al.  Using origami design principles to fold reprogrammable mechanical metamaterials , 2014, Science.

[24]  Samuel M. Felton,et al.  A method for building self-folding machines , 2014, Science.

[25]  M. Hillmyer,et al.  Polylactide Vitrimers. , 2014, ACS macro letters.

[26]  Qiang Zhao,et al.  An instant multi-responsive porous polymer actuator driven by solvent molecule sorption , 2014, Nature Communications.

[27]  Christoph Weder,et al.  Optically healable polymers. , 2013, Chemical Society reviews.

[28]  E. Palleau,et al.  Reversible patterning and actuation of hydrogels by electrically assisted ionoprinting , 2013, Nature Communications.

[29]  Gabriel Villar,et al.  A Tissue-Like Printed Material , 2013, Science.

[30]  J. Greener,et al.  Three-dimensional shape transformations of hydrogel sheets induced by small-scale modulation of internal stresses , 2013, Nature Communications.

[31]  Mark Schenk,et al.  Geometry of Miura-folded metamaterials , 2013, Proceedings of the National Academy of Sciences.

[32]  David H. Gracias,et al.  Laser triggered sequential folding of microstructures , 2012 .

[33]  Ludwik Leibler,et al.  Catalytic Control of the Vitrimer Glass Transition. , 2012, ACS macro letters.

[34]  Leonid Ionov,et al.  Shape-programmed folding of stimuli-responsive polymer bilayers. , 2012, ACS nano.

[35]  Ludwik Leibler,et al.  Metal-catalyzed transesterification for healing and assembling of thermosets. , 2012, Journal of the American Chemical Society.

[36]  R. Hayward,et al.  Designing Responsive Buckled Surfaces by Halftone Gel Lithography , 2012, Science.

[37]  M. Dickey,et al.  Self-folding of polymer sheets using local light absorption , 2012 .

[38]  Ludwik Leibler,et al.  Silica-Like Malleable Materials from Permanent Organic Networks , 2011, Science.

[39]  Andrew G. Gillies,et al.  Optically-and Thermally-responsive Programmable Materials Based on Carbon Nanotube-hydrogel Polymer Composites , 2022 .

[40]  Choon‐Hong Tan,et al.  Mechanistic considerations of guanidine-catalyzed reactions. , 2011, Chemical communications.

[41]  Stephen Z. D. Cheng,et al.  Three-dimensional actuators transformed from the programmed two-dimensional structures via bending, twisting and folding mechanisms , 2011 .

[42]  Justin R. Kumpfer,et al.  Optically healable supramolecular polymers , 2011, Nature.

[43]  Hao Yan,et al.  DNA Origami with Complex Curvatures in Three-Dimensional Space , 2011, Science.

[44]  Kristi S. Anseth,et al.  Photodegradable, Photoadaptable Hydrogels via Radical-Mediated Disulfide Fragmentation Reaction , 2011, Macromolecules.

[45]  W. Huck,et al.  Controlled Folding of 2D Au–Polymer Brush Composites into 3D Microstructures , 2011 .

[46]  A. Lendlein,et al.  Multifunctional Shape‐Memory Polymers , 2010, Advanced materials.

[47]  M. C. Stuart,et al.  Emerging applications of stimuli-responsive polymer materials. , 2010, Nature materials.

[48]  J. Aizenberg,et al.  Reversible Switching of Hydrogel-Actuated Nanostructures into Complex Micropatterns , 2007, Science.

[49]  C. Bowman,et al.  Photoinduced Plasticity in Cross-Linked Polymers , 2005, Science.

[50]  E. Smela Conjugated Polymer Actuators for Biomedical Applications , 2003 .

[51]  G. Wallace,et al.  Use of Ionic Liquids for π-Conjugated Polymer Electrochemical Devices , 2002, Science.

[52]  A. Lendlein,et al.  Shape-memory polymers , 2002 .

[53]  Q. Pei,et al.  High-speed electrically actuated elastomers with strain greater than 100% , 2000, Science.