Cascade-able spin torque logic gates with input–output isolation

Spin torque majority gate (STMG) is one of the promising options for beyond-complementary metal–oxide–semiconductor non-volatile logic circuits for normally-off computing. Modeling of prior schemes demonstrated logic completeness using majority operation and nonlinear transfer characteristics. However significant problems arose with cascade-ability and input output isolation manifesting as domain walls (DWs) stopping, reflecting off ends of wires or propagating back to the inputs. We introduce a new scheme to enable cascade-ability and isolation based on (a) in-plane DW automotion in interconnects, (b) exchange coupling of magnetization between two FM layers, and (c) 'round-about' topology for the majority gate. We performed micro-magnetic simulations that demonstrate switching operation of this STMG scheme. These circuits were verified to enable isolation of inputs from output signals and to be cascade-able without limitations.

[1]  N. L. Schryer,et al.  The motion of 180° domain walls in uniform dc magnetic fields , 1974 .

[2]  Parkin,et al.  Spin engineering: Direct determination of the Ruderman-Kittel-Kasuya-Yosida far-field range function in ruthenium. , 1991, Physical review. B, Condensed matter.

[3]  Parkin,et al.  Oscillatory magnetic exchange coupling through thin copper layers. , 1991, Physical review letters.

[4]  Berger Emission of spin waves by a magnetic multilayer traversed by a current. , 1996, Physical review. B, Condensed matter.

[5]  J. Slonczewski Current-driven excitation of magnetic multilayers , 1996 .

[6]  J. Bass,et al.  Excitation of a magnetic multilayer by an electric current , 1998 .

[7]  I. Sutherland,et al.  Logical Effort: Designing Fast CMOS Circuits , 1999 .

[8]  Ralph,et al.  Current-induced switching of domains in magnetic multilayer devices , 1999, Science.

[9]  P. L. Doussal,et al.  Creep and depinning in disordered media , 2000, cond-mat/0002299.

[10]  G. Laricchia,et al.  On the normalization of the positron-impact direct ionization cross-section in the noble gases , 2002 .

[11]  Edmond Cambril,et al.  Domain wall pinning and controlled magnetic switching in narrow ferromagnetic ring structures with notches (invited) , 2003 .

[12]  Jacques Miltat,et al.  Faster magnetic walls in rough wires , 2003, Nature materials.

[13]  James A. Hutchby,et al.  Limits to binary logic switch scaling - a gedanken model , 2003, Proc. IEEE.

[14]  Y. Aoyagi,et al.  Spin-current-assisted domain-wall depinning in a submicron magnetic wire , 2003 .

[15]  S. Sarma,et al.  Spintronics: Fundamentals and applications , 2004, cond-mat/0405528.

[16]  M. Hosomi,et al.  A novel nonvolatile memory with spin torque transfer magnetization switching: spin-ram , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[17]  D. Nikonov,et al.  Research directions in beyond CMOS computing , 2007 .

[18]  B. Diény,et al.  Creep and flow regimes of magnetic domain-wall motion in ultrathin Pt/Co/Pt films with perpendicular anisotropy. , 2007, Physical review letters.

[19]  J. Miltat,et al.  Spin-torque driven magnetization dynamics : Micromagnetic modeling , 2008 .

[20]  S. Yuasa,et al.  Quantitative measurement of voltage dependence of spin-transfer torque in MgO-based magnetic tunnel junctions , 2008 .

[21]  D. Nikonov,et al.  Operation and Modeling of Semiconductor Spintronics Computing Devices , 2008 .

[22]  D. Ralph,et al.  Spin transfer torques , 2007, 0711.4608.

[23]  S. Datta,et al.  Proposal for an all-spin logic device with built-in memory. , 2010, Nature nanotechnology.

[24]  Dmitri E. Nikonov,et al.  (Keynote) Progress, Opportunities and Challenges for Beyond CMOS Information Processing Technologies , 2011 .

[25]  T. Ghani,et al.  Proposal of a Spin Torque Majority Gate Logic , 2010, IEEE Electron Device Letters.

[26]  D. Jeong,et al.  Emerging memories: resistive switching mechanisms and current status , 2012, Reports on progress in physics. Physical Society.

[27]  D. E. Nikonov,et al.  Uniform methodology for benchmarking beyond-CMOS logic devices , 2012, 2012 International Electron Devices Meeting.

[28]  Nanomagnetic Logic and Magnetization Switching Dynamics in Spin Torque Majority Gates , 2012, 1212.4547.

[29]  C. Ross,et al.  Low Energy Magnetic Domain Wall Logic in Short, Narrow, Ferromagnetic Wires , 2012, IEEE Magnetics Letters.

[30]  Lawrence T. Pileggi,et al.  mLogic: Ultra-low voltage non-volatile logic circuits using STT-MTJ devices , 2012, DAC Design Automation Conference 2012.

[31]  Dmitri E. Nikonov,et al.  Overview of Beyond-CMOS Devices and a Uniform Methodology for Their Benchmarking , 2013, Proceedings of the IEEE.

[32]  Dmitri E. Nikonov,et al.  Automotion of domain walls for spintronic interconnects , 2014 .

[33]  Dmitri E. Nikonov,et al.  Switching efficiency improvement in spin torque majority gates , 2014 .

[34]  D. Nikonov,et al.  Spin torque majority gate logic , 2015 .