Retroviral Restriction Factor TRIM5α Is a Trimer

ABSTRACT The retrovirus restriction factor TRIM5α targets the viral capsid soon after entry. Here we show that the TRIM5α protein oligomerizes into trimers. The TRIM5α coiled-coil and B30.2(SPRY) domains make important contributions to the formation and/or stability of the trimers. A functionally defective TRIM5α mutant with the RING and B-box 2 domains deleted can form heterotrimers with wild-type TRIM5α, accounting for the observed dominant-negative activity of the mutant protein. Trimerization potentially allows TRIM5α to interact with threefold pseudosymmetrical structures on retroviral capsids.

[1]  J. Sodroski,et al.  The Contribution of RING and B-box 2 Domains to Retroviral Restriction Mediated by Monkey TRIM5α* , 2005, Journal of Biological Chemistry.

[2]  A. Yang,et al.  Human Tripartite Motif 5α Domains Responsible for Retrovirus Restriction Activity and Specificity , 2005, Journal of Virology.

[3]  J. Sodroski,et al.  Retrovirus Restriction by TRIM5α Variants from Old World and New World Primates , 2005, Journal of Virology.

[4]  J. Sodroski,et al.  Species-Specific Variation in the B30.2(SPRY) Domain of TRIM5α Determines the Potency of Human Immunodeficiency Virus Restriction , 2005, Journal of Virology.

[5]  Michael Emerman,et al.  Positive selection of primate TRIM5alpha identifies a critical species-specific retroviral restriction domain. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[6]  C. Aiken,et al.  Structural Requirements for Recognition of the Human Immunodeficiency Virus Type 1 Core during Host Restriction in Owl Monkey Cells , 2005, Journal of Virology.

[7]  Jonathan P. Stoye,et al.  A Single Amino Acid Change in the SPRY Domain of Human Trim5α Leads to HIV-1 Restriction , 2005, Current Biology.

[8]  J. Sodroski,et al.  Retrovirus restriction by TRIM5alpha variants from Old World and New World primates. , 2005, Journal of virology.

[9]  Jeremy Luban,et al.  Target Cell Cyclophilin A Modulates Human Immunodeficiency Virus Type 1 Infectivity , 2004, Journal of Virology.

[10]  I. Taylor,et al.  High-resolution structure of a retroviral capsid hexameric amino-terminal domain , 2004, Nature.

[11]  S. Nisole,et al.  A Trim5-cyclophilin A fusion protein found in owl monkey kidney cells can restrict HIV-1. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[12]  J. Sodroski,et al.  TRIM5alpha mediates the postentry block to N-tropic murine leukemia viruses in human cells. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Y. Ikeda,et al.  Influence of gag on Human Immunodeficiency Virus Type 1 Species-Specific Tropism , 2004, Journal of Virology.

[14]  G. Towers,et al.  The human and African green monkey TRIM5alpha genes encode Ref1 and Lv1 retroviral restriction factor activities. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[15]  A. Yang,et al.  Retrovirus resistance factors Ref1 and Lv1 are species-specific variants of TRIM5alpha. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[16]  S. Nisole,et al.  Trim5α protein restricts both HIV-1 and murine leukemia virus , 2004 .

[17]  J. Luban,et al.  Cyclophilin A retrotransposition into TRIM5 explains owl monkey resistance to HIV-1 , 2004, Nature.

[18]  W. Sundquist,et al.  Species-Specific Tropism Determinants in the Human Immunodeficiency Virus Type 1 Capsid , 2004, Journal of Virology.

[19]  C. M. Owens,et al.  Binding and Susceptibility to Postentry Restriction Factors in Monkey Cells Are Specified by Distinct Regions of the Human Immunodeficiency Virus Type 1 Capsid , 2004, Journal of Virology.

[20]  C. M. Owens,et al.  The cytoplasmic body component TRIM5α restricts HIV-1 infection in Old World monkeys , 2004, Nature.

[21]  P. Roach,et al.  Structure-function analysis of GNIP, the glycogenin-interacting protein. , 2004, Archives of biochemistry and biophysics.

[22]  S. Nisole,et al.  Trim5alpha protein restricts both HIV-1 and murine leukemia virus. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[23]  P. Bieniasz,et al.  Cyclophilin A modulates the sensitivity of HIV-1 to host restriction factors , 2003, Nature Medicine.

[24]  P. Bieniasz,et al.  Restriction of multiple divergent retroviruses by Lv1 and Ref1 , 2003, The EMBO journal.

[25]  I. Verma,et al.  Abrogation of postentry restriction of HIV-1-based lentiviral vector transduction in simian cells , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[26]  C. M. Owens,et al.  Human and Simian Immunodeficiency Virus Capsid Proteins Are Major Viral Determinants of Early, Postentry Replication Blocks in Simian Cells , 2003, Journal of Virology.

[27]  G. Lucero,et al.  A dominant block to HIV-1 replication at reverse transcription in simian cells , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[28]  P. Bieniasz,et al.  Cellular inhibitors with Fv1-like activity restrict human and simian immunodeficiency virus tropism , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Y. Takeuchi,et al.  Restriction of lentivirus in monkeys , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[30]  F. Rauscher,et al.  Hetero-oligomerization among the TIF family of RBCC/TRIM domain-containing nuclear cofactors: a potential mechanism for regulating the switch between coactivation and corepression. , 2002, Journal of molecular biology.

[31]  Alessandro Guffanti,et al.  The tripartite motif family identifies cell compartments , 2001, The EMBO journal.

[32]  Y. Takeuchi,et al.  A conserved mechanism of retrovirus restriction in mammals. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Wesley I. Sundquist,et al.  Image reconstructions of helical assemblies of the HIV-1 CA protein , 2022 .

[34]  D. Speicher,et al.  Reconstitution of the KRAB-KAP-1 repressor complex: a model system for defining the molecular anatomy of RING-B box-coiled-coil domain-mediated protein-protein interactions. , 2000, Journal of molecular biology.

[35]  J. Sodroski,et al.  Species-Specific, Postentry Barriers to Primate Immunodeficiency Virus Infection , 1999, Journal of Virology.

[36]  W. Sundquist,et al.  Assembly and analysis of conical models for the HIV-1 core. , 1999, Science.

[37]  W. Sundquist,et al.  Crystal structure of cyclophilin A complexed with a binding site peptide from the HIV‐1 capsid protein , 1997, Protein science : a publication of the Protein Society.

[38]  W. Sundquist,et al.  Crystal Structure of Human Cyclophilin A Bound to the Amino-Terminal Domain of HIV-1 Capsid , 1996, Cell.

[39]  P. Luciw,et al.  Restriction of HIV-1 (subtype B) replication at the entry step in rhesus macaque cells. , 1996, Virology.

[40]  A. Adachi,et al.  Early replication block of human immunodeficiency virus type 1 in monkey cells. , 1995, The Journal of general virology.

[41]  P S Kim,et al.  Repacking protein cores with backbone freedom: structure prediction for coiled coils. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[42]  P. S. Kim,et al.  A switch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants. , 1993, Science.

[43]  A. Lupas,et al.  Predicting coiled coils from protein sequences , 1991, Science.