Role of temperature on CdS and MoS2 doped SnO2 nanostructures: Potential applications in photodetection and temperature dependent current-voltage characteristics

[1]  T. Törndahl,et al.  Nanometer-Thick ZnO/SnO2 Heterostructures Grown on Alumina for H2S Sensing , 2022, ACS applied nano materials.

[2]  P. Augustine,et al.  MoS2/SnO2 heterojunction-based self-powered photodetector , 2022, Applied Physics Letters.

[3]  D. Flandre,et al.  High-performance dual-mode ultra-thin broadband CdS/CIGS heterojunction photodetector on steel. , 2022, Optics express.

[4]  A. K. Hafiz,et al.  Performance optimization of silicon-doped titanium dioxide and multiwalled carbon nanotubes tricomposite nanostructures for electrical and optical applications , 2022, Journal of Materials Science: Materials in Electronics.

[5]  A. Asgari,et al.  Fabrication of a light-emitting device based on the CdS/ZnS spherical quantum dots , 2021, Journal of the European Optical Society-Rapid Publications.

[6]  Sushmee Badhulika,et al.  A Flexible Self‐Powered UV Photodetector and Optical UV Filter Based on β‐Bi2O3/SnO2 Quantum Dots Schottky Heterojunction , 2021, Advanced Materials Interfaces.

[7]  L. Ahmed,et al.  Chemical Vapour Deposition of CdS Thin Films at Low Temperatures from Cadmium Ethyl Xanthate , 2021 .

[8]  Abdullah S. Alshammari,et al.  Improved Photodetection Performance of Nanostructured CdS films Based Photodetectors Via Novel Er Doping , 2021, Journal of Inorganic and Organometallic Polymers and Materials.

[9]  P. Menon,et al.  MoS2/h-BN/Graphene Heterostructure and Plasmonic Effect for Self-Powering Photodetector: A Review , 2021, Materials.

[10]  T. Ahamad,et al.  Simplified chemical processed Cd1−x Al x S thin films for high-performance photodetector applications , 2021, Journal of physics. Condensed matter : an Institute of Physics journal.

[11]  K. Terabe,et al.  High responsivity in MoS2 phototransistors based on charge trapping HfO2 dielectrics , 2020, Communications Materials.

[12]  T. Alshahrani,et al.  An effect of precursor concentrations on the photodetection capabilities of CdS thin films for high-efficiency visible-light photodetector applications , 2020, Applied Physics A.

[13]  C. K.,et al.  Self-powered broadband photodetector based on a solution-processed p-NiO/n-CdS:Al heterojunction , 2020, Nanotechnology.

[14]  H. Tao,et al.  Highly sensitive ultraviolet photodetectors based on ZnO/SnO2 core-shell nanorod arrays , 2020 .

[15]  Nageh K. Allam,et al.  Temperature-dependent transport properties of CVD-fabricated n-GaN nanorods/p-Si heterojunction devices , 2020, RSC advances.

[16]  L. Su,et al.  Scalable manufacture of vertical p‐GaN / n‐SnO 2 heterostructure for self‐powered ultraviolet photodetector, solar cell and dual‐color light emitting diode , 2020 .

[17]  E. M. Salman,et al.  Photoelectric properties of SnO2: Ag/P–Si heterojunction photodetector , 2020 .

[18]  X. Ji,et al.  Enhanced self-powered UV sensing performance of ZnO/Au/Al2O3 photodetector with the decoration of Au nanoparticles , 2020, Journal of Materials Science: Materials in Electronics.

[19]  K. Acharya,et al.  Defect Engineered MoS2 Nanostructures for ROS Generation in Dark: Anti-pollutant and Anti-fungal Performances. , 2019, ACS applied materials & interfaces.

[20]  Sunkook Kim,et al.  On MoS2 TFT Design Consideration for NO2 Gas Sensor. , 2019, ACS sensors.

[21]  J. C. Dhar,et al.  Self-powered UV detection using SnO2 nanowire arrays with Au Schottky contact , 2019, Materials Science in Semiconductor Processing.

[22]  Z. Ding,et al.  Temperature dependent optical properties of SnO2 film study by ellipsometry , 2019, Optical Materials Express.

[23]  H. K. Hassun,et al.  Highly selective CdS:Ag heterojunction for photodetector applications , 2019, XIAMEN-CUSTIPEN WORKSHOP ON THE EQUATION OF STATE OF DENSE NEUTRON-RICH MATTER IN THE ERA OF GRAVITATIONAL WAVE ASTRONOMY.

[24]  Hongjie Wang,et al.  One-step hydrothermal growth of MoS2 nanosheets/CdS nanoparticles heterostructures on montmorillonite for enhanced visible light photocatalytic activity , 2019, Applied Clay Science.

[25]  G. Shen,et al.  Stretchable SnO2-CdS interlaced-nanowire film ultraviolet photodetectors , 2019, Science China Materials.

[26]  K. Mahalakshmi,et al.  Influence of twin boundaries on the photocurrent decay of nanobranch and dense-forest structured SnO2 UV photodetectors , 2019, Superlattices and Microstructures.

[27]  A. Marzo,et al.  OPTICAL AND ELECTRICAL PROPERTIES OF SILICON SOLAR CELLS BY WET CHEMICAL ETCHING , 2019, Journal of the Chilean Chemical Society.

[28]  D. Guo,et al.  A strain tunable single-layer MoS2 photodetector , 2019, Materials Today.

[29]  Yongli Gao,et al.  High-performance solar-blind SnO2 nanowire photodetectors assembled using optical tweezers. , 2019, Nanoscale.

[30]  Tingting Xu,et al.  A self-powered solar-blind photodetector based on a MoS2/β-Ga2O3 heterojunction , 2018 .

[31]  Jongbaeg Kim,et al.  Improvement of photoresponse in MoS2 BY SnO2-functionalization and its application to flexible and transparaent photodetector , 2018, 2018 IEEE Micro Electro Mechanical Systems (MEMS).

[32]  Kewei Zhang,et al.  Self‐Powered UV Photodetector Array Based on P3HT/ZnO Nanowire Array Heterojunction , 2017 .

[33]  R. Kumar,et al.  Visible and UV photo-detection in ZnO nanostructured thin films via simple tuning of solution method , 2017, Scientific Reports.

[34]  S. Yin,et al.  Oxygen vacancies confined in SnO2 nanoparticles for desirable electronic structure and enhanced visible light photocatalytic activity , 2017 .

[35]  Parikshit Sahatiya,et al.  Large‐Area, Flexible Broadband Photodetector Based on ZnS–MoS2 Hybrid on Paper Substrate , 2017 .

[36]  S. Young,et al.  High Response of Ultraviolet Photodetector Based on Al-Doped ZnO Nanosheet Structures , 2017, IEEE Journal of Selected Topics in Quantum Electronics.

[37]  Vijay Kumar,et al.  Sol–gel synthesis of SnO2/CdS heterostructures using various Cd:S molar ratio solutions and its application in photocatalytic degradation of organic dyes , 2017, Journal of Materials Science: Materials in Electronics.

[38]  Pingping Yu,et al.  Ultrasensitive Self-Powered Solar-Blind Deep-Ultraviolet Photodetector Based on All-Solid-State Polyaniline/MgZnO Bilayer. , 2016, Small.

[39]  Bin Zhao,et al.  Large scale, highly efficient and self-powered UV photodetectors enabled by all-solid-state n-TiO2 nanowell/p-NiO mesoporous nanosheet heterojunctions , 2016 .

[40]  Dongzhi Zhang,et al.  Facile Fabrication of MoS2-Modified SnO2 Hybrid Nanocomposite for Ultrasensitive Humidity Sensing. , 2016, ACS applied materials & interfaces.

[41]  Ebuka S. Arinze,et al.  High-performing visible-blind photodetectors based on SnO2/CuO nanoheterojunctions. , 2015, Applied physics letters.

[42]  A. Polity,et al.  Polycrystalline SnO2 films grown by chemical vapor deposition on quartz glass , 2015 .

[43]  Wei Wang,et al.  Flexible photodetector from ultraviolet to near infrared based on a SnS2 nanosheet microsphere film , 2015 .

[44]  Jun Zhang,et al.  Laser cooling of CdS nanobelts: thickness matters. , 2013, Optics express.

[45]  Jiangtian Li,et al.  SnO₂@CdS nanowire-quantum dots heterostructures: tailoring optical properties of SnO₂ for enhanced photodetection and photocatalysis. , 2013, Nanoscale.

[46]  A. Kis,et al.  Breakdown of high-performance monolayer MoS2 transistors. , 2012, ACS nano.

[47]  Z. Yin,et al.  Single-layer MoS2 phototransistors. , 2012, ACS nano.

[48]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[49]  Eui-Tae Kim,et al.  Characterization of photoconductive CdS thin films prepared on glass substrates for photoconductive-sensor applications , 2008 .

[50]  Shihua Huang,et al.  Temperature dependence of photoluminescence in CdS nanocrystals prepared by the sol-gel method , 1995 .

[51]  Fei Wen,et al.  MoS2-doped spherical SnO2 for SO2 sensing under UV light at room temperature , 2021 .

[52]  Lili Sun,et al.  Band structure and optical properties of MoS2/SnO2 hetero-bilayer from hybrid functional calculations , 2020 .

[53]  R. Singh,et al.  MoS2 nanostructures as transparent material: Optical transmittance measurements , 2020 .

[54]  Radhaballav Bhar,et al.  Photovoltaic properties of F:SnO2/CdS/CuO/Ag heterojunction solar cell , 2019, Materials Research Bulletin.

[55]  S. Rayar,et al.  Effect of annealing and dopants on the physical properties of CdS nanoparticles , 2015 .

[56]  Zhenan Tang,et al.  Ultrafast and High Sensitive UV/IR Photodetector Based on a Single SnO 2 Nanowire , 2014 .

[57]  A. Razooqi,et al.  Design Band Energy diagram of SnO2/CdS-CdTe Thin Film Heterojunction Using I-V and C-V Measurements , 2014, Engineering and Technology Journal.