Pairwise comparison matrices (PCMs) over an Abelian linearly ordered (alo)‐group \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$\mathcal{G}=(G, \odot, \leq)$\end{document} have been introduced to generalize multiplicative, additive and fuzzy ones and remove some consistency drawbacks. Under the assumption of divisibility of \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$\mathcal{G}$\end{document}, for each PCM A=(aij), a ⊙‐mean vector \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$\underline{w}_{m}(A)$\end{document} can be associated with A and a consistency measure \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$I_{\mathcal{G}}(A)$\end{document}, expressed in terms of ⊙‐mean of \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$\mathcal{G}$\end{document}‐distances, can be provided. In this paper, we focus on the consistency index \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$I_{\mathcal{G}}(A)$\end{document}. By using the notion of rational power and the related properties, we establish a link between \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$\underline{w}_{m}(A)$\end{document} and \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$I_{\mathcal{G}}(A)$\end{document}. The relevance of this link is twofold because it gives more validity to \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$I_{\mathcal{G}}(A)$\end{document} and more meaning to \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$\underline{w}_{m}(A)$\end{document}; in fact, it ensures that if \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$I_{\mathcal{G}}(A)$\end{document} is close to the identity element then, from a side A is close to be a consistent PCM and from the other side \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$\underline{w}_{m}(A)$\end{document} is close to be a consistent vector; thus, it can be chosen as a priority vector for the alternatives. © 2011 Wiley Periodicals, Inc.
[1]
J. Barzilai.
Consistency Measures for Pairwise Comparison Matrices
,
1998
.
[2]
T. Saaty.
Axiomatic foundation of the analytic hierarchy process
,
1986
.
[3]
Tetsuzo Tanino,et al.
Fuzzy Preference Relations in Group Decision Making
,
1988
.
[4]
Ronald R. Yager,et al.
Structure of Uninorms
,
1997,
Int. J. Uncertain. Fuzziness Knowl. Based Syst..
[5]
L. D'Apuzzo,et al.
A general unified framework for pairwise comparison matrices in multicriterial methods
,
2009
.
[6]
Massimo Squillante,et al.
Generalized consistency and intensity vectors for comparison matrices
,
2007,
Int. J. Intell. Syst..
[7]
Francisco Herrera,et al.
Some issues on consistency of fuzzy preference relations
,
2004,
Eur. J. Oper. Res..
[8]
Livia D'Apuzzo,et al.
Transitive Matrices, Strict Preference Order and Ordinal Evaluation Operators
,
2006,
Soft Comput..
[9]
Livia D'Apuzzo,et al.
Weak Consistency and Quasi-Linear Means Imply the Actual Ranking
,
2002,
Int. J. Uncertain. Fuzziness Knowl. Based Syst..
[10]
L. Basile,et al.
Transitive matrices, strict preference and intensity operators
,
2006
.
[11]
Ralph Kopperman,et al.
Topologies arising from metrics valued in abelian ℓ-groups
,
2011
.
[12]
Christian Eitzinger,et al.
Triangular Norms
,
2001,
Künstliche Intell..
[13]
Livia D’Apuzzo,et al.
Ranking and weak consistency in the A.H.P. context
,
1997
.
[14]
T. Broadbent.
Abelian Groups
,
1970,
Nature.
[15]
T. L. Saaty.
A Scaling Method for Priorities in Hierarchical Structures
,
1977
.
[16]
Massimo Squillante,et al.
Building Consistent Pairwise Comparison Matrices over Abelian Linearly Ordered Groups
,
2009,
ADT.
[17]
M. Bohanec,et al.
The Analytic Hierarchy Process
,
2004
.
[18]
Bice Cavallo,et al.
Characterizations of consistent pairwise comparison matrices over abelian linearly ordered groups
,
2010,
Int. J. Intell. Syst..