About a consistency index for pairwise comparison matrices over a divisible alo‐group

Pairwise comparison matrices (PCMs) over an Abelian linearly ordered (alo)‐group \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$\mathcal{G}=(G, \odot, \leq)$\end{document} have been introduced to generalize multiplicative, additive and fuzzy ones and remove some consistency drawbacks. Under the assumption of divisibility of \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$\mathcal{G}$\end{document}, for each PCM A=(aij), a ⊙‐mean vector \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$\underline{w}_{m}(A)$\end{document} can be associated with A and a consistency measure \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$I_{\mathcal{G}}(A)$\end{document}, expressed in terms of ⊙‐mean of \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$\mathcal{G}$\end{document}‐distances, can be provided. In this paper, we focus on the consistency index \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$I_{\mathcal{G}}(A)$\end{document}. By using the notion of rational power and the related properties, we establish a link between \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$\underline{w}_{m}(A)$\end{document} and \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$I_{\mathcal{G}}(A)$\end{document}. The relevance of this link is twofold because it gives more validity to \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$I_{\mathcal{G}}(A)$\end{document} and more meaning to \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$\underline{w}_{m}(A)$\end{document}; in fact, it ensures that if \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$I_{\mathcal{G}}(A)$\end{document} is close to the identity element then, from a side A is close to be a consistent PCM and from the other side \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$\underline{w}_{m}(A)$\end{document} is close to be a consistent vector; thus, it can be chosen as a priority vector for the alternatives. © 2011 Wiley Periodicals, Inc.

[1]  J. Barzilai Consistency Measures for Pairwise Comparison Matrices , 1998 .

[2]  T. Saaty Axiomatic foundation of the analytic hierarchy process , 1986 .

[3]  Tetsuzo Tanino,et al.  Fuzzy Preference Relations in Group Decision Making , 1988 .

[4]  Ronald R. Yager,et al.  Structure of Uninorms , 1997, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[5]  L. D'Apuzzo,et al.  A general unified framework for pairwise comparison matrices in multicriterial methods , 2009 .

[6]  Massimo Squillante,et al.  Generalized consistency and intensity vectors for comparison matrices , 2007, Int. J. Intell. Syst..

[7]  Francisco Herrera,et al.  Some issues on consistency of fuzzy preference relations , 2004, Eur. J. Oper. Res..

[8]  Livia D'Apuzzo,et al.  Transitive Matrices, Strict Preference Order and Ordinal Evaluation Operators , 2006, Soft Comput..

[9]  Livia D'Apuzzo,et al.  Weak Consistency and Quasi-Linear Means Imply the Actual Ranking , 2002, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[10]  L. Basile,et al.  Transitive matrices, strict preference and intensity operators , 2006 .

[11]  Ralph Kopperman,et al.  Topologies arising from metrics valued in abelian ℓ-groups , 2011 .

[12]  Christian Eitzinger,et al.  Triangular Norms , 2001, Künstliche Intell..

[13]  Livia D’Apuzzo,et al.  Ranking and weak consistency in the A.H.P. context , 1997 .

[14]  T. Broadbent Abelian Groups , 1970, Nature.

[15]  T. L. Saaty A Scaling Method for Priorities in Hierarchical Structures , 1977 .

[16]  Massimo Squillante,et al.  Building Consistent Pairwise Comparison Matrices over Abelian Linearly Ordered Groups , 2009, ADT.

[17]  M. Bohanec,et al.  The Analytic Hierarchy Process , 2004 .

[18]  Bice Cavallo,et al.  Characterizations of consistent pairwise comparison matrices over abelian linearly ordered groups , 2010, Int. J. Intell. Syst..