Infinite coverings of cages
暂无分享,去创建一个
A family of infinite cubic graphs Y s , s = 2, 3, 4, 5, is constructed. The vertices of Y s are lattice points in Euclidean space of dimension 2 s −1 , the girth of Y s is 6s - 6, and Y s has a group of automorphisms which acts regularly on the s -arcs.
[1] W. T. Tutte. A family of cubical graphs , 1947, Mathematical Proceedings of the Cambridge Philosophical Society.
[2] W. T. Tutte. Lectures on matroids , 1965 .
[3] Norman Biggs,et al. Constructing 5‐Arc‐Transitive Cubic Graphs , 1982 .
[4] Norman Biggs,et al. Homological Coverings of Graphs , 1984 .