Seamless integration of design and Kirchhoff–Love shell analysis using analysis-suitable unstructured T-splines

Abstract Analysis-suitable T-splines (ASTS) including both extraordinary points and T-junctions are used to solve Kirchhoff–Love shell problems. Extraordinary points are required to represent surfaces with arbitrary topological genus. T-junctions enable local refinement of regions where increased resolution is needed. The benefits of using ASTS to define shell geometries are at least two-fold: (1) The manual and time-consuming task of building a new mesh from scratch using the CAD geometry as an input is avoided and (2) C 1 or higher inter-element continuity enables the discretization of shell formulations in primal form defined by fourth-order partial differential equations. A complete and state-of-the-art description of the development of ASTS, including extraordinary points and T-junctions, is presented. In particular, we improve the construction of C 1 -continuous non-negative spline basis functions near extraordinary points to obtain optimal convergence rates with respect to the square root of the number of degrees of freedom when solving linear elliptic problems. The applicability of the proposed technology to shell analysis is exemplified by performing geometrically nonlinear Kirchhoff–Love shell simulations of a pinched hemisphere, an oil sump of a car, a pipe junction, and a B-pillar of a car with 15 holes. Building ASTS for these examples involves using T-junctions and extraordinary points with valences 3, 5, and 6, which often suffice for the design of free-form surfaces. Our analysis results are compared with data from the literature using either a seven-parameter shell formulation or Kirchhoff–Love shells. We have also imported both finite element meshes and ASTS meshes into the commercial software LS-DYNA, used Reissner–Mindlin shells, and compared the result with our Kirchhoff–Love shell results. Excellent agreement is found in all cases. The complexity of the shell geometries considered in this paper shows that ASTS are applicable to real-world industrial problems.

[1]  Ellen Kuhl,et al.  Isogeometric Kirchhoff-Love shell formulations for biological membranes. , 2015, Computer methods in applied mechanics and engineering.

[2]  L. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communications.

[3]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[4]  Marco S. Pigazzini,et al.  A new multi-layer approach for progressive damage simulation in composite laminates based on isogeometric analysis and Kirchhoff–Love shells. Part I: basic theory and modeling of delamination and transverse shear , 2018 .

[5]  Alain Combescure,et al.  An isogeometric locking‐free NURBS‐based solid‐shell element for geometrically nonlinear analysis , 2015 .

[6]  Thomas J. R. Hughes,et al.  n-Widths, sup–infs, and optimality ratios for the k-version of the isogeometric finite element method , 2009 .

[7]  Giancarlo Sangalli,et al.  ANALYSIS-SUITABLE T-SPLINES OF ARBITRARY DEGREE: DEFINITION, LINEAR INDEPENDENCE AND APPROXIMATION PROPERTIES , 2013 .

[8]  T. Hughes,et al.  Isogeometric analysis of the Cahn–Hilliard phase-field model , 2008 .

[9]  Cv Clemens Verhoosel,et al.  An isogeometric solid‐like shell element for nonlinear analysis , 2013 .

[10]  E. Ramm,et al.  Models and finite elements for thin-walled structures , 2004 .

[11]  Yuri Bazilevs,et al.  Three-dimensional dynamic simulation of elastocapillarity , 2018 .

[12]  Jörg Peters,et al.  Matched Gk-constructions always yield Ck-continuous isogeometric elements , 2015, Comput. Aided Geom. Des..

[13]  Cv Clemens Verhoosel,et al.  An isogeometric continuum shell element for non-linear analysis , 2014 .

[14]  Roger A. Sauer,et al.  A new rotation-free isogeometric thin shell formulation and a corresponding continuity constraint for patch boundaries , 2017 .

[15]  A. Korobenko,et al.  Isogeometric analysis of continuum damage in rotation-free composite shells , 2015 .

[16]  M. Ortiz,et al.  Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .

[17]  Thomas J. R. Hughes,et al.  Isogeometric divergence-conforming B-splines for the unsteady Navier-Stokes equations , 2013, J. Comput. Phys..

[18]  Thomas J. R. Hughes,et al.  Isogeometric shell analysis: The Reissner-Mindlin shell , 2010 .

[19]  Ulrich Reif,et al.  A Refineable Space of Smooth Spline Surfaces of Arbitrary Topological Genus , 1997 .

[20]  Mario Kapl,et al.  Construction of analysis-suitable G1 planar multi-patch parameterizations , 2017, Comput. Aided Des..

[21]  Xin Li,et al.  On the Linear Independence and Partition of Unity of Arbitrary Degree Analysis-Suitable T-splines , 2015 .

[22]  T. Hughes,et al.  Isogeometric analysis of the isothermal Navier-Stokes-Korteweg equations , 2010 .

[23]  B. Simeon,et al.  Isogeometric Reissner–Mindlin shell analysis with exactly calculated director vectors , 2013 .

[24]  Lei Liu,et al.  Weighted T-splines with application in reparameterizing trimmed NURBS surfaces , 2015 .

[25]  Li,et al.  SOME PROPERTIES FOR ANALYSIS-SUITABLE T-SPLINES , 2015 .

[26]  G. Sangalli,et al.  Isogeometric analysis in electromagnetics: B-splines approximation , 2010 .

[27]  Thomas J. R. Hughes,et al.  A large deformation, rotation-free, isogeometric shell , 2011 .

[28]  John A. Evans,et al.  Robustness of isogeometric structural discretizations under severe mesh distortion , 2010 .

[29]  Yuri Bazilevs,et al.  The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches , 2010 .

[30]  Roland Wüchner,et al.  Analysis in computer aided design: Nonlinear isogeometric B-Rep analysis of shell structures , 2015 .

[31]  Giancarlo Sangalli,et al.  IsoGeometric Analysis: Stable elements for the 2D Stokes equation , 2011 .

[32]  John A. Evans,et al.  Isogeometric boundary element analysis using unstructured T-splines , 2013 .

[33]  Alessandro Reali,et al.  Duality and unified analysis of discrete approximations in structural dynamics and wave propagation : Comparison of p-method finite elements with k-method NURBS , 2008 .

[34]  Xiao Xiao,et al.  Isogeometric shape optimisation of shell structures using multiresolution subdivision surfaces , 2016 .

[35]  Peter Schröder,et al.  Integrated modeling, finite-element analysis, and engineering design for thin-shell structures using subdivision , 2002, Comput. Aided Des..

[36]  Ekkehard Ramm,et al.  Hierarchic isogeometric large rotation shell elements including linearized transverse shear parametrization , 2017 .

[37]  Alessandro Reali,et al.  Isogeometric collocation using analysis-suitable T-splines of arbitrary degree , 2016 .

[38]  Ekkehard Ramm,et al.  A shear deformable, rotation-free isogeometric shell formulation , 2016 .

[39]  Mario Kapl,et al.  The Argyris isogeometric space on unstructured multi-patch planar domains , 2017 .

[40]  Roland Wüchner,et al.  Isogeometric shell analysis with Kirchhoff–Love elements , 2009 .

[41]  John A. Evans,et al.  Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .

[42]  Xin Li,et al.  Blended B-spline construction on unstructured quadrilateral and hexahedral meshes with optimal convergence rates in isogeometric analysis , 2018, Computer Methods in Applied Mechanics and Engineering.

[43]  Hongwei Lin,et al.  Watertight trimmed NURBS , 2008, ACM Trans. Graph..

[44]  Xin Li,et al.  SOME PROPERTIES FOR ANALYSIS-SUITABLE T-SPLINES , 2015 .

[45]  Tom Lyche,et al.  T-spline Simplication and Local Renement , 2004 .

[46]  A. Combescure,et al.  On the development of NURBS-based isogeometric solid shell elements: 2D problems and preliminary extension to 3D , 2013 .

[47]  Thomas J. R. Hughes,et al.  On linear independence of T-spline blending functions , 2012, Comput. Aided Geom. Des..

[48]  Ekkehard Ramm,et al.  A variational method to avoid locking—independent of the discretization scheme , 2018 .

[49]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[50]  Benjamin Marussig,et al.  A Review of Trimming in Isogeometric Analysis: Challenges, Data Exchange and Simulation Aspects , 2017, Archives of Computational Methods in Engineering.

[51]  Hendrik Speleers,et al.  THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..

[52]  Laura De Lorenzis,et al.  The variational collocation method , 2016 .

[53]  J. N. Reddy,et al.  Tensor-based finite element formulation for geometrically nonlinear analysis of shell structures , 2007 .

[54]  T. Hughes,et al.  ISOGEOMETRIC COLLOCATION METHODS , 2010 .

[55]  Thomas J. R. Hughes,et al.  Truncated T-splines: Fundamentals and methods , 2017 .

[56]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[57]  H. Nguyen-Xuan,et al.  An extended isogeometric thin shell analysis based on Kirchhoff-Love theory , 2015 .

[58]  Giancarlo Sangalli,et al.  Analysis-suitable G1 multi-patch parametrizations for C1 isogeometric spaces , 2016, Comput. Aided Geom. Des..

[59]  Hector Gomez,et al.  Non-body-fitted fluid-structure interaction: Divergence-conforming B-splines, fully-implicit dynamics, and variational formulation , 2018, J. Comput. Phys..

[60]  Giancarlo Sangalli,et al.  Characterization of analysis-suitable T-splines , 2015, Comput. Aided Geom. Des..

[61]  Thomas J. R. Hughes,et al.  Truncated hierarchical Catmull–Clark subdivision with local refinement , 2015 .

[62]  G. Sangalli,et al.  Linear independence of the T-spline blending functions associated with some particular T-meshes , 2010 .

[63]  D. F. Rogers,et al.  An Introduction to NURBS: With Historical Perspective , 2011 .

[64]  W. Boehm Inserting New Knots into B-spline Curves , 1980 .

[65]  Thomas J. R. Hughes,et al.  Truncated hierarchical tricubic spline construction on unstructured hexahedral meshes for isogeometric analysis applications , 2017, Comput. Math. Appl..

[66]  T. Hughes,et al.  Local refinement of analysis-suitable T-splines , 2012 .

[67]  Thomas J. R. Hughes,et al.  Liquid–vapor phase transition: Thermomechanical theory, entropy stable numerical formulation, and boiling simulations , 2015 .

[68]  Hung Nguyen-Xuan,et al.  Static, free vibration, and buckling analysis of laminated composite Reissner–Mindlin plates using NURBS‐based isogeometric approach , 2012 .

[69]  Konrad Polthier,et al.  Integration of generalized B-spline functions on Catmull-Clark surfaces at singularities , 2016, Comput. Aided Des..

[70]  Hector Gomez,et al.  Arbitrary-degree T-splines for isogeometric analysis of fully nonlinear Kirchhoff-Love shells , 2017, Comput. Aided Des..

[71]  Jörg Peters,et al.  Refinable C1 spline elements for irregular quad layout , 2016, Comput. Aided Geom. Des..

[72]  Jörg Peters,et al.  A Comparative Study of Several Classical, Discrete Differential and Isogeometric Methods for Solving Poisson's Equation on the Disk , 2014, Axioms.

[73]  Michael C. H. Wu,et al.  Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials , 2015 .

[74]  A. Combescure,et al.  Efficient isogeometric NURBS-based solid-shell elements: Mixed formulation and B-method , 2013 .

[75]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[76]  Mostafa M. Abdalla,et al.  Isogeometric design of anisotropic shells: Optimal form and material distribution , 2013 .

[77]  Bert Jüttler,et al.  On numerical integration in isogeometric subdivision methods for PDEs on surfaces , 2016 .

[78]  Roger A. Sauer,et al.  Efficient isogeometric thin shell formulations for soft biological materials , 2016, Biomechanics and Modeling in Mechanobiology.

[79]  Thomas J. R. Hughes,et al.  Extended Truncated Hierarchical Catmull–Clark Subdivision , 2016 .

[80]  R. Echter,et al.  A hierarchic family of isogeometric shell finite elements , 2013 .

[81]  Fehmi Cirak,et al.  Shear‐flexible subdivision shells , 2012 .

[82]  Josef Kiendl,et al.  Isogeometric Kirchhoff–Love shell formulation for elasto-plasticity , 2018, Computer Methods in Applied Mechanics and Engineering.

[83]  Fehmi Cirak,et al.  Subdivision shells with exact boundary control and non‐manifold geometry , 2011 .

[84]  Matthew G. Knepley,et al.  Composing Scalable Nonlinear Algebraic Solvers , 2015, SIAM Rev..

[85]  Neil A. Dodgson,et al.  A symmetric, non-uniform, refine and smooth subdivision algorithm for general degree B-splines , 2009, Comput. Aided Geom. Des..

[86]  Giancarlo Sangalli,et al.  Some estimates for h–p–k-refinement in Isogeometric Analysis , 2011, Numerische Mathematik.

[87]  Michael Ortiz,et al.  Fully C1‐conforming subdivision elements for finite deformation thin‐shell analysis , 2001, International Journal for Numerical Methods in Engineering.

[88]  Thomas J. R. Hughes,et al.  Blended isogeometric shells , 2013 .

[89]  Jerry I. Lin,et al.  Explicit algorithms for the nonlinear dynamics of shells , 1984 .

[90]  Xin Li,et al.  Analysis-suitable T-splines: characterization, refineability, and approximation , 2012, ArXiv.

[91]  T. Hughes,et al.  Smooth cubic spline spaces on unstructured quadrilateral meshes with particular emphasis on extraordinary points: Geometric design and isogeometric analysis considerations , 2017 .

[92]  Giancarlo Sangalli,et al.  Analysis-Suitable T-splines are Dual-Compatible , 2012 .

[93]  Michael Ortiz,et al.  A cohesive approach to thin-shell fracture and fragmentation , 2005 .