MPI-AMRVAC: A parallel, grid-adaptive PDE toolkit

We report on the latest additions to our open-source, block-grid adaptive framework MPI-AMRVAC, which is a general toolkit for especially hyperbolic/parabolic partial differential equations (PDEs). Applications traditionally focused on shock-dominated, magnetized plasma dynamics described by either Newtonian or special relativistic (magneto)hydrodynamics, but its versatile design easily extends to different PDE systems. Here, we demonstrate applications covering any-dimensional scalar to system PDEs, with e.g. Korteweg-de Vries solutions generalizing early findings on soliton behaviour, shallow water applications in round or square pools, hydrodynamic convergence tests as well as challenging computational fluid and plasma dynamics applications. The recent addition of a parallel multigrid solver opens up new avenues where also elliptic constraints or stiff source terms play a central role. This is illustrated here by solving several multi-dimensional reaction-diffusion-type equations. We document the minimal requirements for adding a new physics module governed by any nonlinear PDE system, such that it can directly benefit from the code flexibility in combining various temporal and spatial discretisation schemes. Distributed through GitHub, MPI-AMRVAC can be used to perform 1D, 1.5D, 2D, 2.5D or 3D simulations in Cartesian, cylindrical or spherical coordinate systems, using parallel domain-decomposition, or exploiting fully dynamic block quadtree-octree grids.

[1]  Daniel C. M. Palumbo,et al.  The Event Horizon General Relativistic Magnetohydrodynamic Code Comparison Project , 2019, The Astrophysical Journal Supplement Series.

[2]  S. Komissarov,et al.  Rayleigh–Taylor instability in magnetohydrodynamic simulations of the Crab nebula , 2014, 1405.4029.

[3]  U. Ziegler,et al.  The NIRVANA code: Parallel computational MHD with adaptive mesh refinement , 2008, Comput. Phys. Commun..

[4]  I. E. Mellah,et al.  MPI-AMRVAC 2.0 for Solar and Astrophysical Applications , 2017, 1710.06140.

[5]  J. Schnakenberg,et al.  Simple chemical reaction systems with limit cycle behaviour. , 1979, Journal of theoretical biology.

[6]  Michael Dumbser,et al.  Divergence-free MHD on unstructured meshes using high order finite volume schemes based on multidimensional Riemann solvers , 2015, J. Comput. Phys..

[7]  J. Verwer,et al.  Numerical solution of time-dependent advection-diffusion-reaction equations , 2003 .

[8]  R. Keppens,et al.  Growth and saturation of the Kelvin–Helmholtz instability with parallel and antiparallel magnetic fields , 1999, Journal of Plasma Physics.

[9]  S. Komissarov,et al.  Three-dimensional magnetohydrodynamic simulations of the Crab nebula , 2013, 1310.2531.

[10]  Udo Ziegler,et al.  A three-dimensional Cartesian adaptive mesh code for compressible magnetohydrodynamics , 1999 .

[11]  Rony Keppens,et al.  Parallel, grid-adaptive approaches for relativistic hydro and magnetohydrodynamics , 2012, J. Comput. Phys..

[12]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[13]  Rony Keppens,et al.  Implicit and semi-implicit schemes: Algorithms , 1999 .

[14]  Gábor Tóth,et al.  A General Code for Modeling MHD Flows on Parallel Computers: Versatile Advection Code , 1996 .

[15]  James M. Stone,et al.  An unsplit Godunov method for ideal MHD via constrained transport in three dimensions , 2007, J. Comput. Phys..

[16]  Stephen Roberts,et al.  Numerical solution of the two-dimensional unsteady dam break , 2000 .

[17]  R. Keppens,et al.  Coronal rain in magnetic bipolar weak fields , 2017, 1706.01804.

[18]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[19]  R. Keppens,et al.  Formation of wind-captured disks in supergiant X-ray binaries , 2019, Astronomy & Astrophysics.

[20]  A. I. Delis,et al.  Numerical solution of the two-dimensional shallow water equations by the application of relaxation methods , 2005 .

[21]  Rony Keppens,et al.  A multidimensional grid-adaptive relativistic magnetofluid code , 2008, Comput. Phys. Commun..

[22]  Steven J. Ruuth Implicit-explicit methods for reaction-diffusion problems in pattern formation , 1995 .

[23]  X. Feng,et al.  AMR Simulations of Magnetohydrodynamic Problems by the CESE Method in Curvilinear Coordinates , 2010 .

[24]  Mark Vogelsberger,et al.  A discontinuous Galerkin method for solving the fluid and magnetohydrodynamic equations in astrophysical simulations , 2013, 1305.5536.

[25]  A. Wouwer,et al.  Adaptive Method of Lines , 2001 .

[26]  R. Keppens,et al.  Extreme-ultraviolet and X-Ray Emission of Turbulent Solar Flare Loops , 2019, The Astrophysical Journal.

[27]  P. Hopkins A new class of accurate, mesh-free hydrodynamic simulation methods , 2014, 1409.7395.

[28]  R. Teyssier Cosmological hydrodynamics with adaptive mesh refinement - A new high resolution code called RAMSES , 2001, astro-ph/0111367.

[29]  Hui Li,et al.  Cosmological AMR MHD with Enzo , 2009, 0902.2594.

[30]  Philip M. Gresho,et al.  On the theory of semi‐implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. Part 1: Theory , 1990 .

[31]  H. Falcke,et al.  The black hole accretion code , 2016, 1611.09720.

[32]  C. Vreugdenhil,et al.  Numerical methods for advection-diffusion problems , 1993 .

[33]  J. P. Goedbloed,et al.  Adaptive Mesh Refinement for conservative systems: multi-dimensional efficiency evaluation , 2003, astro-ph/0403124.

[34]  S. Poedts,et al.  How is the Jovian main auroral emission affected by the solar wind? , 2017 .

[35]  A. Turing The chemical basis of morphogenesis , 1990 .

[36]  Stephen K. Scott,et al.  Autocatalytic reactions in the isothermal, continuous stirred tank reactor: Isolas and other forms of multistability , 1983 .

[37]  M. Baes,et al.  Pinwheels in the sky, with dust : 3D modelling of the Wolf-Rayet 98a environment , 2016, 1605.09239.

[38]  G. Tóth,et al.  Comparison of Some Flux Corrected Transport and Total Variation Diminishing Numerical Schemes for Hydrodynamic and Magnetohydrodynamic Problems , 1996 .

[39]  R. Keppens,et al.  MPI-AMRVAC FOR SOLAR AND ASTROPHYSICS , 2014, 1407.2052.

[40]  B. Fryxell,et al.  FLASH: An Adaptive Mesh Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes , 2000 .

[41]  Odele Straub,et al.  GR-AMRVAC code applications: accretion onto compact objects, boson stars versus black holes , 2016 .

[42]  R. Keppens,et al.  Nonlinear dynamics of Kelvin–Helmholtz unstable magnetized jets: Three-dimensional effects , 1999 .

[43]  J. E. Pearson Complex Patterns in a Simple System , 1993, Science.

[44]  Yun Yang,et al.  An upwind CESE scheme for 2D and 3D MHD numerical simulation in general curvilinear coordinates , 2018, J. Comput. Phys..

[45]  Rony Keppens,et al.  Scalar hyperbolic PDE simulations and coupling strategies , 2014, J. Comput. Appl. Math..

[46]  Rony Keppens,et al.  A geometric multigrid library for quadtree/octree AMR grids coupled to MPI-AMRVAC , 2019, Comput. Phys. Commun..

[47]  James Stone,et al.  A fourth-order accurate finite volume method for ideal MHD via upwind constrained transport , 2017, J. Comput. Phys..

[48]  A. Ferrari,et al.  PLUTO: A Numerical Code for Computational Astrophysics , 2007, astro-ph/0701854.

[49]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[50]  Gábor Tóth The LASY Preprocessor and Its Application to General Multidimensional Codes , 1997 .

[51]  P. Lax,et al.  On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .

[52]  P. Colella,et al.  THE PLUTO CODE FOR ADAPTIVE MESH COMPUTATIONS IN ASTROPHYSICAL FLUID DYNAMICS , 2011, 1110.0740.

[53]  P. Teuben,et al.  Athena: A New Code for Astrophysical MHD , 2008, 0804.0402.

[54]  E. Toro Shock-Capturing Methods for Free-Surface Shallow Flows , 2001 .

[55]  R. Keppens,et al.  Three-dimensional MHD Simulations of Solar Prominence Oscillations in a Magnetic Flux Rope , 2018, 1803.03385.

[56]  L. Rezzolla,et al.  Constrained transport and adaptive mesh refinement in the Black Hole Accretion Code , 2019, Astronomy & Astrophysics.

[57]  U. Washington,et al.  A moving-mesh hydrodynamic solver for ChaNGa , 2017, 1707.05333.

[58]  W. J. Freeman,et al.  Alan Turing: The Chemical Basis of Morphogenesis , 1986 .

[59]  Shigeru Kondo,et al.  Reaction-Diffusion Model as a Framework for Understanding Biological Pattern Formation , 2010, Science.

[60]  Rony Keppens,et al.  Hybrid block-AMR in cartesian and curvilinear coordinates: MHD applications , 2007, J. Comput. Phys..

[61]  Rony Keppens,et al.  On the influence of environmental parameters on mixing and reconnection caused by the Kelvin-Helmholtz instability at the magnetopause , 2017 .

[62]  V. Rusanov,et al.  The calculation of the interaction of non-stationary shock waves and obstacles , 1962 .

[63]  T. Quinn,et al.  Gasoline2: a modern smoothed particle hydrodynamics code , 2017 .

[64]  I. E. Mellah,et al.  Formation of wind-captured discs in Supergiant X-ray binaries : consequences for Vela X-1 and Cygnus X-1. , 2018, 1810.12933.

[65]  N. Zabusky,et al.  Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States , 1965 .

[66]  Rony Keppens,et al.  Magnetohydrodynamics of Laboratory and Astrophysical Plasmas , 2019 .

[67]  Shengtai Li An HLLC Riemann solver for magneto-hydrodynamics , 2005 .

[68]  G. Tóth The ∇·B=0 Constraint in Shock-Capturing Magnetohydrodynamics Codes , 2000 .

[69]  L. Rezzolla,et al.  General-relativistic Resistive Magnetohydrodynamics with Robust Primitive-variable Recovery for Accretion Disk Simulations , 2019, The Astrophysical Journal Supplement Series.

[70]  Some Remarks on the Stability Condition of Numerical Scheme of the KdV-type Equation , 2017 .

[71]  R. Löhner An adaptive finite element scheme for transient problems in CFD , 1987 .

[72]  Manuel Torrilhon,et al.  Compact third-order limiter functions for finite volume methods , 2009, J. Comput. Phys..