Symmetric and symplectic ERKN methods for oscillatory Hamiltonian systems
暂无分享,去创建一个
Wei Shi | Xiong You | Zhongli Liu | Zhaoxia Chen | Zhongli Liu | Xiong You | Wei Shi | Zhaoxia Chen
[1] Hans Van de Vyver,et al. A symplectic exponentially fitted modified Runge–Kutta–Nyström method for the numerical integration of orbital problems , 2005 .
[2] J. M. Sanz-Serna,et al. Numerical Hamiltonian Problems , 1994 .
[3] Hans Van de Vyver. A fourth-order symplectic exponentially fitted integrator , 2006, Comput. Phys. Commun..
[4] Manuel Calvo,et al. Sixth-order symmetric and symplectic exponentially fitted Runge-Kutta methods of the Gauss type , 2009 .
[5] T. E. Simos,et al. Exponentially fitted symplectic integrator. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.
[6] H. Van de Vyver,et al. A symplectic Runge-Kutta-Nyström method with minimal phase-lag , 2007 .
[7] J. M. Franco. Runge–Kutta–Nyström methods adapted to the numerical integration of perturbed oscillators , 2002 .
[8] Wilson C. K. Poon,et al. Phase behavior and crystallization kinetics of PHSA-coated PMMA colloids , 2003 .
[9] Ernst Hairer,et al. Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .
[10] E. Hairer,et al. Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .
[11] Theodore E. Simos,et al. A phase-fitted Runge-Kutta-Nyström method for the numerical solution of initial value problems with oscillating solutions , 2008, Comput. Phys. Commun..
[12] J. M. Franco. Exponentially fitted explicit Runge-Kutta-Nyström methods , 2004 .
[13] J. Butcher. Numerical methods for ordinary differential equations , 2003 .
[14] Mari Paz Calvo,et al. The Development of Variable-Step Symplectic Integrators, with Application to the Two-Body Problem , 1993, SIAM J. Sci. Comput..
[15] J. M. Franco. Exponentially fitted symplectic integrators of RKN type for solving oscillatory problems , 2007, Comput. Phys. Commun..
[16] Hans Van de Vyver,et al. Stability and phase-lag analysis of explicit Runge-Kutta methods with variable coefficients for oscillatory problems , 2005, Comput. Phys. Commun..
[17] Jesús Vigo-Aguiar,et al. Symplectic conditions for exponential fitting Runge-Kutta-Nyström methods , 2005, Math. Comput. Model..
[18] Manuel Calvo,et al. Structure preservation of exponentially fitted Runge-Kutta methods , 2008 .
[19] Ernst Hairer,et al. The life-span of backward error analysis for numerical integrators , 1997 .
[20] Xinyuan Wu,et al. Note on derivation of order conditions for ARKN methods for perturbed oscillators , 2009, Comput. Phys. Commun..
[21] D. G. Bettis. Runge-Kutta algorithms for oscillatory problems , 1979 .
[22] Theodore E. Simos,et al. P-stability, Trigonometric-fitting and the numerical solution of the radial Schrödinger equation , 2009, Comput. Phys. Commun..
[23] Xinyuan Wu,et al. Extended RKN-type methods for numerical integration of perturbed oscillators , 2009, Comput. Phys. Commun..
[24] J. M. Franco. New methods for oscillatory systems based on ARKN methods , 2006 .
[25] J. M. Franco. A 5(3) pair of explicit ARKN methods for the numerical integration of perturbed oscillators , 2003 .