Symmetric and symplectic ERKN methods for oscillatory Hamiltonian systems

Abstract The ERKN methods proposed by H. Yang et al. [Comput. Phys. Comm. 180 (2009) 1777] are an important improvement of J.M. Francoʼs ARKN methods for perturbed oscillators [J.M. Franco, Comput. Phys. Comm. 147 (2002) 770]. This paper focuses on the symmetry and symplecticity conditions for ERKN methods solving oscillatory Hamiltonian systems. Two examples of symmetric and symplectic ERKN (SSERKN) methods of orders two and four respectively are constructed. The phase and stability properties of the new methods are analyzed. The results of numerical experiments show the robustness and competence of the SSERKN methods compared with some well-known methods in the literature.

[1]  Hans Van de Vyver,et al.  A symplectic exponentially fitted modified Runge–Kutta–Nyström method for the numerical integration of orbital problems , 2005 .

[2]  J. M. Sanz-Serna,et al.  Numerical Hamiltonian Problems , 1994 .

[3]  Hans Van de Vyver A fourth-order symplectic exponentially fitted integrator , 2006, Comput. Phys. Commun..

[4]  Manuel Calvo,et al.  Sixth-order symmetric and symplectic exponentially fitted Runge-Kutta methods of the Gauss type , 2009 .

[5]  T. E. Simos,et al.  Exponentially fitted symplectic integrator. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  H. Van de Vyver,et al.  A symplectic Runge-Kutta-Nyström method with minimal phase-lag , 2007 .

[7]  J. M. Franco Runge–Kutta–Nyström methods adapted to the numerical integration of perturbed oscillators , 2002 .

[8]  Wilson C. K. Poon,et al.  Phase behavior and crystallization kinetics of PHSA-coated PMMA colloids , 2003 .

[9]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[10]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[11]  Theodore E. Simos,et al.  A phase-fitted Runge-Kutta-Nyström method for the numerical solution of initial value problems with oscillating solutions , 2008, Comput. Phys. Commun..

[12]  J. M. Franco Exponentially fitted explicit Runge-Kutta-Nyström methods , 2004 .

[13]  J. Butcher Numerical methods for ordinary differential equations , 2003 .

[14]  Mari Paz Calvo,et al.  The Development of Variable-Step Symplectic Integrators, with Application to the Two-Body Problem , 1993, SIAM J. Sci. Comput..

[15]  J. M. Franco Exponentially fitted symplectic integrators of RKN type for solving oscillatory problems , 2007, Comput. Phys. Commun..

[16]  Hans Van de Vyver,et al.  Stability and phase-lag analysis of explicit Runge-Kutta methods with variable coefficients for oscillatory problems , 2005, Comput. Phys. Commun..

[17]  Jesús Vigo-Aguiar,et al.  Symplectic conditions for exponential fitting Runge-Kutta-Nyström methods , 2005, Math. Comput. Model..

[18]  Manuel Calvo,et al.  Structure preservation of exponentially fitted Runge-Kutta methods , 2008 .

[19]  Ernst Hairer,et al.  The life-span of backward error analysis for numerical integrators , 1997 .

[20]  Xinyuan Wu,et al.  Note on derivation of order conditions for ARKN methods for perturbed oscillators , 2009, Comput. Phys. Commun..

[21]  D. G. Bettis Runge-Kutta algorithms for oscillatory problems , 1979 .

[22]  Theodore E. Simos,et al.  P-stability, Trigonometric-fitting and the numerical solution of the radial Schrödinger equation , 2009, Comput. Phys. Commun..

[23]  Xinyuan Wu,et al.  Extended RKN-type methods for numerical integration of perturbed oscillators , 2009, Comput. Phys. Commun..

[24]  J. M. Franco New methods for oscillatory systems based on ARKN methods , 2006 .

[25]  J. M. Franco A 5(3) pair of explicit ARKN methods for the numerical integration of perturbed oscillators , 2003 .