Far-infrared-detected Lyman-break galaxies at z ~ 3 - Dust attenuation and dust correction factors at high redshift

Lyman break galaxies (LBGs) represent one of the kinds of star-forming galaxies that are found in the high-redshift universe. The detection of LBGs in the FIR domain can provide very important clues on their dust attenuation and total SFR, allowing a more detailed study than those performed so far. In this work we explore the FIR emission of a sample of 16 LBGs at z ~ 3 in the GOODS-North and GOODS-South fields that are individually detected in PACS-100um or PACS-160um. These detections demonstrate the possibility of measuring the dust emission of LBGs at high redshift. We find that PACS-detected LBGs at z ~ 3 are highly obscured galaxies which belong to the Ultra luminous IR galaxies or Hyper luminous IR galaxies class. Their total SFR cannot be recovered with the dust attenuation factors obtained from their UV continuum slope or their SED-derived dust attenuation employing Bruzual & Charlot (2003) templates. Both methods underestimate the results for most of the galaxies. Comparing with a sample of PACS-detected LBGs at z ~ 1 we find evidences that the FIR emission of LBGs might have changed with redshift in the sense that the dustiest LBGs found at z ~ 3 have more prominent FIR emission, are dustier for a given UV slope, and have higher SFR for a given stellar mass than the dustiest LBGs found at z ~ 1.

[1]  V. Buat,et al.  Properties and morphologies of Lyman break galaxies at z ∼ 1 in the Chandra Deep Field South, inferred from spectral energy distributions , 2013 .

[2]  Toulouse,et al.  Properties of z ~ 3–6 Lyman break galaxies - I. Testing star formation histories and the SFR-mass relation with ALMA and near-IR spectroscopy , 2012, 1207.3074.

[3]  M. Dopita,et al.  STELLAR POPULATIONS OF LYMAN BREAK GALAXIES AT z ≃ 1–3 IN THE HST/WFC3 EARLY RELEASE SCIENCE OBSERVATIONS , 2012, 1206.6116.

[4]  D. Elbaz,et al.  THE MOLECULAR GAS CONTENT OF z = 3 LYMAN BREAK GALAXIES: EVIDENCE OF A NON-EVOLVING GAS FRACTION IN MAIN-SEQUENCE GALAXIES AT z > 2 , 2012, 1209.1484.

[5]  T. Takeuchi,et al.  REEXAMINATION OF THE INFRARED EXCESS–ULTRAVIOLET SLOPE RELATION OF LOCAL GALAXIES , 2012, 1206.3905.

[6]  G. Williger,et al.  GALEX-SELECTED LYMAN BREAK GALAXIES AT z ∼ 2: COMPARISON WITH OTHER POPULATIONS , 2011, 1112.2786.

[7]  C. Conselice,et al.  CANDELS: THE EVOLUTION OF GALAXY REST-FRAME ULTRAVIOLET COLORS FROM z = 8 TO 4 , 2011, 1110.3785.

[8]  A. Fontana,et al.  The blue UV slopes of z ~ 4 Lyman break galaxies: implications for the corrected star formation rate density , 2011, 1109.1757.

[9]  M. Franx,et al.  UV-CONTINUUM SLOPES AT z  ∼  4–7 FROM THE HUDF09+ERS+CANDELS OBSERVATIONS: DISCOVERY OF A WELL-DEFINED UV COLOR–MAGNITUDE RELATIONSHIP FOR z ⩾ 4 STAR-FORMING GALAXIES , 2011, 1109.0994.

[10]  Cambridge,et al.  On Lyα emission in z ~ 3–6 UV-selected galaxies , 2011, 1110.4398.

[11]  C. Gronwall,et al.  A SEARCH FOR LYMAN BREAK GALAXIES IN THE CHANDRA DEEP FIELD SOUTH USING SWIFT ULTRAVIOLET/OPTICAL TELESCOPE , 2011 .

[12]  P. McCarthy,et al.  VERY STRONG EMISSION-LINE GALAXIES IN THE WFC3 INFRARED SPECTROSCOPIC PARALLEL SURVEY AND IMPLICATIONS FOR HIGH-REDSHIFT GALAXIES, , 2011, 1109.0639.

[13]  A. Cimatti,et al.  THE LESSER ROLE OF STARBURSTS IN STAR FORMATION AT z = 2 , 2011, 1108.0933.

[14]  Jordi Cepa,et al.  ON STAR FORMATION RATES AND STAR FORMATION HISTORIES OF GALAXIES OUT TO z ∼ 3 , 2011, 1106.5502.

[15]  D. Calzetti,et al.  GOODS–Herschel: an infrared main sequence for star-forming galaxies , 2011, 1105.2537.

[16]  Jing Wang,et al.  DUST ATTENUATION IN UV-SELECTED STARBURSTS AT HIGH REDSHIFT AND THEIR LOCAL COUNTERPARTS: IMPLICATIONS FOR THE COSMIC STAR FORMATION RATE DENSITY , 2010, 1011.6098.

[17]  A. Cimatti,et al.  A FIRST GLIMPSE INTO THE FAR-IR PROPERTIES OF HIGH-z UV-SELECTED GALAXIES: HERSCHEL/PACS OBSERVATIONS OF z ∼ 3 LBGS , 2010, 1007.3846.

[18]  D. Elbaz,et al.  A MULTI-WAVELENGTH VIEW OF THE STAR FORMATION ACTIVITY AT z ∼ 3 , 2010, 1003.5773.

[19]  A. Fontana,et al.  Physical and morphological properties of z ~ 3 Lyman break galaxies: dependence on Lyα line emission , 2010, 1002.2068.

[20]  L. Cowie,et al.  ULTRADEEP KS IMAGING IN THE GOODS-N , 2010, 1002.1892.

[21]  M. Nonino,et al.  The Great Observatories Origins Deep Survey VLT/VIMOS Spectroscopy in the GOODS-South Field , 2005, 0802.2930.

[22]  M. Franx,et al.  UV CONTINUUM SLOPE AND DUST OBSCURATION FROM z ∼ 6 TO z ∼ 2: THE STAR FORMATION RATE DENSITY AT HIGH REDSHIFT , 2009, 0909.4074.

[23]  D. Schaerer,et al.  The impact of nebular emission on the ages of z~6 galaxies , 2009, 0905.0866.

[24]  S. Chapman,et al.  Submillimetre Detection of the z=2.83 Lyman-Break Galaxy, Westphal-MM8, and Implications for SCUBA2 , 2009, 0903.2244.

[25]  E. Zackrisson,et al.  The Impact of Nebular Emission on the Broadband Fluxes of High-Redshift Galaxies , 2008, 0802.3696.

[26]  Heidelberg,et al.  Star formation and mass assembly in high-redshift galaxies , 2009, 0905.0683.

[27]  D. Burgarella,et al.  Lyman break galaxies at z ∼ 1 and the evolution of dust attenuation in star-forming galaxies with redshift , 2007, 0706.0810.

[28]  A. Cimatti,et al.  Multiwavelength Study of Massive Galaxies at z~2. I. Star Formation and Galaxy Growth , 2007, 0705.2831.

[29]  A. Fontana,et al.  A comparison of LBGs, DRGs, and BzK galaxies: their contribution to the stellar mass density in the GOODS-MUSIC sample , 2007 .

[30]  K. Aoki,et al.  Differential evolution of the UV luminosity function of Lyman break galaxies from z ∼ 5 to 3* , 2007, astro-ph/0701841.

[31]  Garching,et al.  Lyman-break galaxies at z ~ 5 – I. First significant stellar mass assembly in galaxies that are not simply z ~ 3 LBGs at higher redshift , 2007, astro-ph/0701725.

[32]  David Schiminovich,et al.  Radial Variation of Attenuation and Star Formation in the Largest Late-Type Disks Observed with GALEX , 2006, astro-ph/0609071.

[33]  C. Papovich,et al.  Spitzer Observations of z ~ 3 Lyman Break Galaxies: Stellar Masses and Mid-Infrared Properties , 2006, astro-ph/0605355.

[34]  D. Burgarella,et al.  Ultraviolet-to-far infrared properties of Lyman break galaxies and luminous infrared galaxies at z ∼ 1 , 2006 .

[35]  C. Conselice,et al.  Infrared Luminous Lyman Break Galaxies: A Population that Bridges LBGs and SCUBA Galaxies , 2005, astro-ph/0507685.

[36]  M. Nonino,et al.  The Great Observatories Origins Deep Survey VLT/VIMOS Spectroscopy in the GOODS-South Field , 2005, 1001.1115.

[37]  Dust Attenuation in the Nearby Universe: A Comparison between Galaxies Selected in the Ultraviolet and in the Far-Infrared , 2004, astro-ph/0411343.

[38]  Cambridge,et al.  The star formation rate of the Universe at z~ 6 from the Hubble Ultra-Deep Field , 2004, astro-ph/0403223.

[39]  M. Giavalisco,et al.  A Deep Wide-Field, Optical, and Near-Infrared Catalog of a Large Area around the Hubble Deep Field North , 2003, astro-ph/0312635.

[40]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[41]  M. Giavalisco,et al.  Lyman Break Galaxies at Redshift z ~ 3: Survey Description and Full Data Set , 2003, astro-ph/0305378.

[42]  Cambridge,et al.  Lyman break galaxies and the star formation rate of the Universe at z≈ 6 , 2003 .

[43]  K. Gordon,et al.  The Dust in Lyman Break Galaxies , 2003, astro-ph/0301121.

[44]  Daniela Calzetti,et al.  Far-Infrared Galaxies in the Far-Ultraviolet , 2001, astro-ph/0112352.

[45]  D. Elbaz,et al.  Interpreting the Cosmic Infrared Background: Constraints on the Evolution of the Dust-enshrouded Star Formation Rate , 2001, astro-ph/0103067.

[46]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[47]  Scott C. Chapman,et al.  A Search for the submillimetre counterparts to Lyman break galaxies , 1999 .

[48]  Timothy M. Heckman,et al.  Dust Absorption and the Ultraviolet Luminosity Density at z ≈ 3 as Calibrated by Local Starburst Galaxies , 1999, astro-ph/9903054.

[49]  Cambridge,et al.  ∼ 4 and the Evolution of the Uv Luminosity Density at High Redshift , 2022 .

[50]  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[51]  A. Fruchter,et al.  HIGH-REDSHIFT GALAXIES IN THE HUBBLE DEEP FIELD : COLOUR SELECTION AND STAR FORMATION HISTORY TO Z 4 , 1996, astro-ph/9607172.

[52]  Mark Dickinson,et al.  Spectroscopy of Lyman Break Galaxies in the Hubble Deep Field , 1996 .

[53]  Piero Madau,et al.  Radiative transfer in a clumpy universe: The colors of high-redshift galaxies , 1995 .

[54]  J. B. Oke,et al.  Secondary standard stars for absolute spectrophotometry , 1983 .

[55]  E. Salpeter The Luminosity function and stellar evolution , 1955 .