Bayesian Calibration of Generalized Pools of Predictive Distributions
暂无分享,去创建一个
[1] Robert Laddaga,et al. Lehrer and the consensus proposal , 1977, Synthese.
[2] M. Rosenblatt. Remarks on a Multivariate Transformation , 1952 .
[3] Mark J. Jensen,et al. Bayesian Semiparametric Stochastic Volatility Modeling , 2008 .
[4] Hemant Ishwaran,et al. SERIES REPRESENTATIONS FOR MULTIVARIATE GENERALIZED GAMMA PROCESSES VIA A SCALE INVARIANCE PRINCIPLE , 2009 .
[5] C. Antoniak. Mixtures of Dirichlet Processes with Applications to Bayesian Nonparametric Problems , 1974 .
[6] S. Hall,et al. Combining density forecasts , 2007 .
[7] A. Raftery,et al. Probabilistic forecasts, calibration and sharpness , 2007 .
[8] Shaun P. Vahey,et al. Combining forecast densities from VARs with uncertain instabilities , 2010 .
[9] Norman R. Swanson,et al. Predictive Density and Conditional Confidence Interval Accuracy Tests , 2004 .
[10] Roberto Casarin,et al. Bayesian Nonparametric Calibration and Combination of Predictive Distributions , 2015, 1502.07246.
[11] C. Robert,et al. A Mixture Approach to Bayesian Goodness of Fit , 2002 .
[12] Stephen G. Walker,et al. Slice sampling mixture models , 2011, Stat. Comput..
[13] Matthew S. Johnson,et al. Probabilistic wind gust forecasting using nonhomogeneous Gaussian regression , 2012 .
[14] M. Stone. The Opinion Pool , 1961 .
[15] Kenneth F. Wallis,et al. Density Forecasting: A Survey , 2000 .
[16] Keisuke Hirano,et al. Semiparametric Bayesian Inference in Autoregressive Panel Data Models , 2002 .
[17] E. S. Epstein. QUALITY CONTROL FOR PROBABILITY FORECASTS , 1966 .
[18] T. Gneiting,et al. Combining Predictive Distributions , 2011, 1106.1638.
[19] Herman K. van Dijk,et al. Parallel Sequential Monte Carlo for Efficient Density Combination: The Deco Matlab Toolbox , 2013 .
[20] Adrian E. Raftery,et al. Bayesian model averaging: a tutorial (with comments by M. Clyde, David Draper and E. I. George, and a rejoinder by the authors , 1999 .
[21] Jim E. Griffin,et al. Inference in Infinite Superpositions of Non-Gaussian Ornstein--Uhlenbeck Processes Using Bayesian Nonparametic Methods , 2011 .
[22] George Kapetanios,et al. Generalised Density Forecast Combinations , 2014 .
[23] A. V. D. Vaart,et al. Posterior convergence rates of Dirichlet mixtures at smooth densities , 2007, 0708.1885.
[24] Sonia Petrone. Bayesian density estimation using bernstein polynomials , 1999 .
[25] T. Ferguson. A Bayesian Analysis of Some Nonparametric Problems , 1973 .
[26] Sylvia Frühwirth-Schnatter,et al. Finite Mixture and Markov Switching Models , 2006 .
[27] K. McConway. Marginalization and Linear Opinion Pools , 1981 .
[28] F. Molteni,et al. The ECMWF Ensemble Prediction System: Methodology and validation , 1996 .
[29] Nizar Bouguila,et al. Practical Bayesian estimation of a finite beta mixture through gibbs sampling and its applications , 2006, Stat. Comput..
[30] A. Timmermann. Forecast Combinations , 2005 .
[31] Milton Abramowitz,et al. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .
[32] T. Gneiting,et al. Combining probability forecasts , 2010 .
[33] A. Timmermann. Chapter 4 Forecast Combinations , 2006 .
[34] M. Bacharach. Group Decisions in the Face of Differences of Opinion , 1975 .
[35] Jim E. Griffin,et al. Stick-breaking autoregressive processes , 2011 .
[36] J. Sethuraman. A CONSTRUCTIVE DEFINITION OF DIRICHLET PRIORS , 1991 .
[37] A. Norets,et al. Bayesian modeling of joint and conditional distributions , 2012 .
[38] M. Escobar,et al. Bayesian Density Estimation and Inference Using Mixtures , 1995 .
[39] Roberto Casarin,et al. Dynamic Predictive Density Combinations for Large Data Sets in Economics and Finance , 2015 .
[40] H. V. Dijk,et al. Combined forecasts from linear and nonlinear time series models , 1999 .
[41] Massimo Guidolin,et al. Forecasts of Us Short-Term Interest Rates: A Flexible Forecast Combination Approach , 2006 .
[42] Lancelot F. James,et al. Gibbs Sampling Methods for Stick-Breaking Priors , 2001 .
[43] L. Wasserman,et al. Consistency of Bernstein polynomial posteriors , 2002 .
[44] M. Escobar. Estimating Normal Means with a Dirichlet Process Prior , 1994 .
[45] Michael,et al. On a Class of Bayesian Nonparametric Estimates : I . Density Estimates , 2008 .
[46] S. MacEachern,et al. Estimating mixture of dirichlet process models , 1998 .
[47] Carmen Cadarso-Suárez,et al. Bayesian Nonparametric Instrumental Variables Regression Based on Penalized Splines and Dirichlet Process Mixtures , 2014 .
[48] Vu,et al. Time-Varying Combinations of Predictive Densities Using Nonlinear Filtering , 2012 .
[49] Kenneth F. Wallis,et al. Combining Density and Interval Forecasts: A Modest Proposal , 2005 .
[50] Anton H. Westveld,et al. Calibrated Probabilistic Forecasting Using Ensemble Model Output Statistics and Minimum CRPS Estimation , 2005 .
[51] Matt Taddy. Autoregressive Mixture Models for Dynamic Spatial Poisson Processes: Application to Tracking Intensity of Violent Crime , 2010 .
[52] Matt Taddy,et al. Markov switching Dirichlet process mixture regression , 2009 .
[53] G. A. Barnard,et al. New Methods of Quality Control , 1963 .
[54] M. A. Best. Bayesian Approaches to Clinical Trials and Health‐Care Evaluation , 2005 .
[55] P. Müller,et al. A method for combining inference across related nonparametric Bayesian models , 2004 .
[56] John Geweke,et al. Complete and Incomplete Econometric Models , 2010 .
[57] H. Ishwaran,et al. Markov chain Monte Carlo in approximate Dirichlet and beta two-parameter process hierarchical models , 2000 .
[58] Justinas Pelenis. Bayesian regression with heteroscedastic error density and parametric mean function , 2014 .
[59] S. Ghosal,et al. Kullback Leibler property of kernel mixture priors in Bayesian density estimation , 2007, 0710.2746.
[60] John L. Kling,et al. Calibration-Based Predictive Distributions: An Application of Prequential Analysis to Interest Rates, Money, Prices, and Output , 1989 .
[61] A. Raftery,et al. Strictly Proper Scoring Rules, Prediction, and Estimation , 2007 .
[62] S. Ghosal,et al. Bayesian Estimation of the Spectral Density of a Time Series , 2004 .
[63] Markus Jochmann,et al. Modeling U.S. Inflation Dynamics: A Bayesian Nonparametric Approach , 2015 .
[64] R. Casarin,et al. Bayesian Model Selection for Beta Autoregressive Processes , 2010, 1008.0121.
[65] Monica Billio,et al. Beta Autoregressive Transition Markov-Switching Models for Business Cycle Analysis , 2011 .
[66] T. M. Mills,et al. Korovkin-type Approximation Theory and Its Applications, de Gruyter Studies in Mathematics 17, F. Altomare and M. Campiti, Walter de Gruyter, Berlin, 1994, xi + 627 pp , 1995 .
[67] O. Papaspiliopoulos. A note on posterior sampling from Dirichlet mixture models , 2008 .
[68] Andriy Norets,et al. POSTERIOR CONSISTENCY IN CONDITIONAL DENSITY ESTIMATION BY COVARIATE DEPENDENT MIXTURES , 2011, Econometric Theory.
[69] Tilmann Gneiting,et al. Probabilistic forecasts of wind speed: ensemble model output statistics by using heteroscedastic censored regression , 2010 .
[70] Pierre Pinson,et al. Verification of the ECMWF ensemble forecasts of wind speed against analyses and observations , 2012 .
[71] J. Geweke,et al. Comparing and Evaluating Bayesian Predictive Distributions of Asset Returns , 2008 .
[72] F. Bassetti,et al. Beta-Product Dependent Pitman-Yor Processes for Bayesian Inference , 2013 .
[73] Adrian E. Raftery,et al. Bayesian Model Averaging: A Tutorial , 2016 .
[74] J. Geweke,et al. Optimal Prediction Pools , 2008 .
[75] R. L. Winkler,et al. Coherent combination of experts' opinions , 1995 .
[76] Alexander Tsyplakov,et al. Evaluating Density Forecasts: A Comment , 2011 .
[77] S. Ghosal,et al. Posterior consistency of Dirichlet mixtures for estimating a transition density , 2007 .
[78] Yongqiang Tang,et al. Nonparametric bayesian estimation of positive false discovery rates. , 2007, Biometrics.
[79] Stephen G. Walker,et al. Dependent mixtures of Dirichlet processes , 2011, Comput. Stat. Data Anal..
[80] Germán Molina,et al. A Bayesian Beta Markov Random Field Calibration of the Term Structure of Implied Risk Neutral Densities , 2014, 1409.1956.
[81] C. Granger,et al. Improved methods of combining forecasts , 1984 .
[82] Christian Genest,et al. Combining Probability Distributions: A Critique and an Annotated Bibliography , 1986 .
[83] Sonia Petrone. Random Bernstein Polynomials , 1999 .
[84] A. P. Dawid,et al. Present position and potential developments: some personal views , 1984 .
[85] J. E. Griffin,et al. Order-Based Dependent Dirichlet Processes , 2006 .
[86] Anthony S. Tay,et al. Evaluating Density Forecasts with Applications to Financial Risk Management , 1998 .
[87] J. M. Bates,et al. The Combination of Forecasts , 1969 .
[88] D. Blei. Bayesian Nonparametrics I , 2016 .
[89] James Mitchell,et al. Evaluating, Comparing and Combining Density Forecasts Using the Klic with an Application to the Bank of England and Niesr 'Fan' Charts of Inflation , 2005 .
[90] James Mitchell,et al. Evaluating density forecasts: forecast combinations, model mixtures, calibration and sharpness , 2011 .
[91] Stephen G. Walker,et al. Sampling the Dirichlet Mixture Model with Slices , 2006, Commun. Stat. Simul. Comput..
[92] David B. Dunson,et al. Posterior consistency in conditional distribution estimation , 2013, J. Multivar. Anal..
[93] Thordis L. Thorarinsdottir,et al. Comparison of nonhomogeneous regression models for probabilistic wind speed forecasting , 2018 .
[94] M. Degroot,et al. Optimal linear opinion pools , 1991 .
[95] T. Gneiting,et al. Comparing Density Forecasts Using Threshold- and Quantile-Weighted Scoring Rules , 2011 .
[96] M. Harding,et al. A Bayesian Semiparametric Competing Risk Model with Unobserved Heterogeneity , 2014 .
[97] Enrique ter Horst,et al. Bayesian dynamic density estimation , 2008 .
[98] Bruno de Finetti,et al. Logical foundations and measurement of subjective probability , 1970 .
[99] L. Wasserman,et al. Asymptotic inference for mixture models by using data‐dependent priors , 2000 .
[100] Siddhartha Chib,et al. Semiparametric Bayes analysis of longitudinal data treatment models , 2002 .
[101] Stephen C. Hora,et al. An Analytic Method for Evaluating the Performance of Aggregation Rules for Probability Densities , 2010, Oper. Res..