Multiframe Superresolution Techniques For Distributed Imaging Systems

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 CHAPTER

[1]  Aggelos K. Katsaggelos,et al.  High-resolution images from low-resolution compressed video , 2003, IEEE Signal Process. Mag..

[2]  H Stark,et al.  Image restoration by convex projections in the presence of noise. , 1983, Applied optics.

[3]  D. Robinson,et al.  Fundamental performance limits in image registration , 2004, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[4]  Roger Y. Tsai,et al.  Multiframe image restoration and registration , 1984 .

[5]  Marc P Christensen,et al.  Adaptive flat multiresolution multiplexed computational imaging architecture utilizing micromirror arrays to steer subimager fields of view. , 2006, Applied optics.

[6]  L. Xia,et al.  Combination of the LSQR method and a genetic algorithm for solving the electrocardiography inverse problem. , 2007, Physics in medicine and biology.

[7]  Georgios B. Giannakis,et al.  Direct blind equalizers of multiple FIR channels: a deterministic approach , 1996 .

[8]  Brian D. Jeffs,et al.  Restoration of blurred star field images by maximally sparse optimization , 1993, IEEE Trans. Image Process..

[9]  Daniel Gross,et al.  Improved resolution from subpixel shifted pictures , 1992, CVGIP Graph. Model. Image Process..

[10]  Aggelos K. Katsaggelos,et al.  Bayesian multichannel image restoration using compound Gauss-Markov random fields , 2003, IEEE Trans. Image Process..

[11]  Hayit Greenspan,et al.  Super-resolution in MRI , 2002, Proceedings IEEE International Symposium on Biomedical Imaging.

[12]  Michael A. Saunders,et al.  LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares , 1982, TOMS.

[13]  Michal Irani,et al.  Improving resolution by image registration , 1991, CVGIP Graph. Model. Image Process..

[14]  Aggelos K. Katsaggelos,et al.  Simultaneous motion estimation and resolution enhancement of compressed low resolution video , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[15]  A. S. Fruchter,et al.  Drizzle: A Method for the Linear Reconstruction of Undersampled Images , 1998 .

[16]  Stephen P. Boyd,et al.  Enhancing Sparsity by Reweighted ℓ1 Minimization , 2007, 0711.1612.

[17]  Takeo Kanade,et al.  Limits on super-resolution and how to break them , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[18]  Richard R. Schultz,et al.  Extraction of high-resolution video stills from MPEG image sequences , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[19]  Robert D. Nowak,et al.  Distributed image compression for sensor networks using correspondence analysis and super-resolution , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[20]  Michael Elad,et al.  Restoration of a single superresolution image from several blurred, noisy, and undersampled measured images , 1997, IEEE Trans. Image Process..

[21]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[22]  Jorge Herbert de Lira,et al.  Two-Dimensional Signal and Image Processing , 1989 .

[23]  Keith M. Chugg,et al.  Near-optimal parallel distributed data detection for page-oriented optical memories , 1998 .

[24]  Curtis R. Vogel,et al.  Ieee Transactions on Image Processing Fast, Robust Total Variation{based Reconstruction of Noisy, Blurred Images , 2022 .

[25]  Edward A. Watson,et al.  High-Resolution Image Reconstruction from a Sequence of Rotated and Translated Frames and its Application to an Infrared Imaging System , 1998 .

[26]  Andrew Zisserman,et al.  Super-resolution from multiple views using learnt image models , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[27]  Deepu Rajan,et al.  An MRF-Based Approach to Generation of Super-Resolution Images from Blurred Observations , 2004, Journal of Mathematical Imaging and Vision.

[28]  David Gesbert,et al.  On-line blind multichannel equalization based on mutually referenced filters , 1997, IEEE Trans. Signal Process..

[29]  S. Chaudhuri Super-Resolution Imaging , 2001 .

[30]  Wotao Yin,et al.  An Iterative Regularization Method for Total Variation-Based Image Restoration , 2005, Multiscale Model. Simul..

[31]  David L. Donoho,et al.  De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.

[32]  Ming-Chao Chiang,et al.  Local blur estimation and super-resolution , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[33]  Aggelos K. Katsaggelos,et al.  Reconstruction of a high-resolution image by simultaneous registration, restoration, and interpolation of low-resolution images , 1995, Proceedings., International Conference on Image Processing.

[34]  Michael Elad,et al.  Super-Resolution Reconstruction of Image Sequences , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[35]  Bhaskar D. Rao,et al.  An affine scaling methodology for best basis selection , 1999, IEEE Trans. Signal Process..

[36]  D. Robinson,et al.  Statistical performance analysis of superresolution image reconstruction , 2004, Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004..

[37]  Ming-Chao Chiang,et al.  Efficient image warping and super-resolution , 1996, Proceedings Third IEEE Workshop on Applications of Computer Vision. WACV'96.

[38]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[39]  Kiyoharu Aizawa,et al.  A scheme for acquiring very high resolution images using multiple cameras , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[40]  Emmanuel J. Candès,et al.  Signal recovery from random projections , 2005, IS&T/SPIE Electronic Imaging.

[41]  Rama Chellappa,et al.  Data-driven multichannel superresolution with application to video sequences , 1999 .

[42]  Peyman Milanfar,et al.  A statistical analysis of diffraction-limited imaging , 2002, Proceedings. International Conference on Image Processing.

[43]  Michael Elad,et al.  Fast and robust multiframe super resolution , 2004, IEEE Transactions on Image Processing.

[44]  Harrison H. Barrett,et al.  Foundations of Image Science , 2003, J. Electronic Imaging.

[45]  Eric L. Miller,et al.  Wavelet domain image restoration with adaptive edge-preserving regularization , 2000, IEEE Trans. Image Process..

[46]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[47]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[48]  X. Jin Factor graphs and the Sum-Product Algorithm , 2002 .

[49]  Nikolas P. Galatsanos,et al.  Reconstruction of a high resolution image from registration and restoration of low resolution images , 1994, Proceedings of 1st International Conference on Image Processing.

[50]  P. Hansen Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion , 1987 .

[51]  Jung-Fu Cheng,et al.  Turbo Decoding as an Instance of Pearl's "Belief Propagation" Algorithm , 1998, IEEE J. Sel. Areas Commun..

[52]  Mark A Neifeld,et al.  Parallel image restoration with a two-dimensional likelihood-based algorithm. , 2002, Applied optics.

[53]  Misha Elena Kilmer,et al.  Choosing Regularization Parameters in Iterative Methods for Ill-Posed Problems , 2000, SIAM J. Matrix Anal. Appl..

[54]  Peyman Milanfar,et al.  A computationally efficient superresolution image reconstruction algorithm , 2001, IEEE Trans. Image Process..

[55]  Michael A. Saunders,et al.  Algorithm 583: LSQR: Sparse Linear Equations and Least Squares Problems , 1982, TOMS.

[56]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[57]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[58]  Achilleas Anastasopoulos,et al.  Iterative Detection: Adaptivity, Complexity Reduction, and Applications , 2000 .

[59]  Per Christian Hansen,et al.  Analysis of Discrete Ill-Posed Problems by Means of the L-Curve , 1992, SIAM Rev..

[60]  Bhaskar D. Rao,et al.  Sparse Bayesian learning for basis selection , 2004, IEEE Transactions on Signal Processing.

[61]  J. Walkup,et al.  Statistical optics , 1986, IEEE Journal of Quantum Electronics.

[62]  M A Neifeld,et al.  Communication theoretic image restoration for binary-valued imagery. , 2000, Applied optics.

[63]  Peyman Milanfar,et al.  A wavelet-based interpolation-restoration method for superresolution (wavelet superresolution) , 2000 .

[64]  Robert D. Nowak,et al.  An EM algorithm for wavelet-based image restoration , 2003, IEEE Trans. Image Process..

[65]  Wen-Yu Su,et al.  Recursive high-resolution reconstruction of blurred multiframe images , 1993, IEEE Trans. Image Process..

[66]  Joos Vandewalle,et al.  How to take advantage of aliasing in bandlimited signals , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[67]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[68]  B. R. Hunt,et al.  Digital Image Restoration , 1977 .

[69]  M A Neifeld,et al.  Image restoration with the Viterbi algorithm. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[70]  Richard G. Baraniuk,et al.  Fast reconstruction of piecewise smooth signals from random projections , 2005 .

[71]  Yoram Bresler,et al.  A new algorithm for computing sparse solutions to linear inverse problems , 1996, 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings.

[72]  Robert L. Stevenson,et al.  Extraction of high-resolution frames from video sequences , 1996, IEEE Trans. Image Process..

[73]  A. Ardeshir Goshtasby,et al.  Image registration by local approximation methods , 1988, Image Vis. Comput..

[74]  Nirmal K. Bose,et al.  Recursive reconstruction of high resolution image from noisy undersampled multiframes , 1990, IEEE Trans. Acoust. Speech Signal Process..

[75]  J. Tanida,et al.  Thin Observation Module by Bound Optics (TOMBO): Concept and Experimental Verification. , 2001, Applied optics.

[76]  Mário A. T. Figueiredo,et al.  Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems , 2007, IEEE Journal of Selected Topics in Signal Processing.

[77]  David J. Sakrison,et al.  The effects of a visual fidelity criterion of the encoding of images , 1974, IEEE Trans. Inf. Theory.

[78]  E. Williams,et al.  Krylov subspace iterative methods for boundary element method based near-field acoustic holography. , 2005, The Journal of the Acoustical Society of America.

[79]  Phil Palmer,et al.  Superresolution for translated satellite images using the Walsh functions , 2004, SPIE Remote Sensing.

[80]  Russell C. Hardie,et al.  Joint MAP registration and high-resolution image estimation using a sequence of undersampled images , 1997, IEEE Trans. Image Process..

[81]  Alex Pentland,et al.  Face recognition using eigenfaces , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.