Fiber-optic spanner.

Methods of controllable, noncontact rotation of optically trapped microscopic objects have garnered significant attention for tomographic imaging and microfluidic actuation. Here, we report development of a fiber-optic spanner and demonstrate controlled rotation of smooth muscle cells. The rotation is realized by introducing a transverse offset between two counterpropagating beams emanating from single-mode optical fibers. The rotation speed and surrounding microfluidic flow could be controlled by varying balanced laser beam powers. Further, we demonstrate simultaneous translation and rotation of the fiber-optically trapped cell by varying the laser power of one fiber-optic arm.

[1]  Christian Dietrich,et al.  The optical cell rotator. , 2008, Optics express.

[2]  M. Berns,et al.  Manipulation of mammalian cells using a single-fiber optical microbeam. , 2008, Journal of biomedical optics.

[3]  Samarendra K. Mohanty,et al.  Controlled rotation of biological microscopic objects using optical line tweezers , 2003, Biotechnology Letters.

[4]  D. Thourhout,et al.  Optomechanical device actuation through the optical gradient force , 2010 .

[5]  Samarendra Mohanty,et al.  Optically-actuated translational and rotational motion at the microscale for microfluidic manipulation and characterization. , 2012, Lab on a chip.

[6]  Miles J. Padgett,et al.  Tweezers with a twist , 2011 .

[7]  Kazi S. Abedin,et al.  Optical manipulation and rotation of liquid crystal drops using high-index fiber-optic tweezers , 2007 .

[8]  M. Prentiss,et al.  Demonstration of a fiber-optical light-force trap. , 1993, Optics letters.

[9]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[10]  D. Baigl,et al.  Photo-actuation of liquids for light-driven microfluidics: state of the art and perspectives. , 2012, Lab on a chip.

[11]  He,et al.  Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. , 1995, Physical review letters.

[12]  H. Rubinsztein-Dunlop,et al.  Optical alignment and spinning of laser-trapped microscopic particles , 1998, Nature.

[13]  Samarendra K. Mohanty,et al.  Probing orientation and rotation of red blood cells in optical tweezers by digital holographic microscopy , 2011, BiOS.

[14]  Samarendra K. Mohanty,et al.  Self-rotation of red blood cells in optical tweezers: prospects for high throughput malaria diagnosis , 2004, Biotechnology Letters.

[15]  Pál Ormos,et al.  Complex micromachines produced and driven by light , 2001, CLEO 2002.

[16]  Alan D. Raisanen,et al.  Stable optical lift , 2010 .

[17]  Johannes Courtial,et al.  Optically controlled three-dimensional rotation of microscopic objects , 2003 .