From stochastic processes to numerical methods: A new scheme for solving reaction subdiffusion fractional partial differential equations

We have introduced a new explicit numerical method, based on a discrete stochastic process, for solving a class of fractional partial differential equations that model reaction subdiffusion. The scheme is derived from the master equations for the evolution of the probability density of a sum of discrete time random walks. We show that the diffusion limit of the master equations recovers the fractional partial differential equation of interest. This limiting procedure guarantees the consistency of the numerical scheme. The positivity of the solution and stability results are simply obtained, provided that the underlying process is well posed. We also show that the method can be applied to standard reaction-diffusion equations. This work highlights the broader applicability of using discrete stochastic processes to provide numerical schemes for partial differential equations, including fractional partial differential equations.

[1]  Christopher Lutsko,et al.  Microscopic approach to nonlinear reaction-diffusion: the case of morphogen gradient formation. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  Santos B. Yuste,et al.  An Explicit Finite Difference Method and a New von Neumann-Type Stability Analysis for Fractional Diffusion Equations , 2004, SIAM J. Numer. Anal..

[3]  B. I. Henry,et al.  A Fractional Order Recovery SIR Model from a Stochastic Process , 2015, Bulletin of mathematical biology.

[4]  Blas M Vinagre Jara,et al.  Matrix approach to discrete fractional calculus III: non-equidistant grids, variable step length and distributed orders , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[5]  S. Wearne,et al.  Anomalous subdiffusion with multispecies linear reaction dynamics. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  S. Wearne,et al.  Fractional Reaction-Diffusion , 2000 .

[7]  I M Sokolov,et al.  Reaction-subdiffusion equations. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Cécile Piret,et al.  A radial basis functions method for fractional diffusion equations , 2013, J. Comput. Phys..

[9]  M. Magdziarz Black-Scholes Formula in Subdiffusive Regime , 2009 .

[10]  Weihua Deng,et al.  Numerical algorithm for the time fractional Fokker-Planck equation , 2007, J. Comput. Phys..

[11]  Christopher Angstmann,et al.  A discrete time random walk model for anomalous diffusion , 2015, J. Comput. Phys..

[12]  Yangquan Chen,et al.  Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion , 2011, Comput. Math. Appl..

[13]  M. Kac Random Walk and the Theory of Brownian Motion , 1947 .

[14]  W. Coffey,et al.  Diffusion and Reactions in Fractals and Disordered Systems , 2002 .

[15]  Melvin Lax,et al.  Stochastic Transport in a Disordered Solid. II. Impurity Conduction , 1973 .

[16]  J. Mixter Fast , 2012 .

[17]  Mehdi Dehghan,et al.  A meshless numerical procedure for solving fractional reaction subdiffusion model via a new combination of alternating direction implicit (ADI) approach and interpolating element free Galerkin (EFG) method , 2015, Comput. Math. Appl..

[18]  C. Harley,et al.  Two Hybrid Methods for Solving Two-Dimensional Linear Time-Fractional Partial Differential Equations , 2014 .

[19]  J. W. Mercer,et al.  Stochastic modeling analysis of sequential first‐order degradation reactions and non‐Fickian transport in steady state plumes , 2014 .

[20]  X. Xie,et al.  Generalized Langevin equation with fractional Gaussian noise: subdiffusion within a single protein molecule. , 2004, Physical review letters.

[21]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[22]  Masaaki Sibuya,et al.  Generalized hypergeometric, digamma and trigamma distributions , 1979 .

[23]  C. Fox The $G$ and $H$ functions as symmetrical Fourier kernels , 1961 .

[24]  E. Montroll,et al.  Random Walks on Lattices. II , 1965 .

[25]  Fawang Liu,et al.  Finite difference approximations for the fractional Fokker–Planck equation , 2009 .

[26]  Aubrey V. Weigel,et al.  Ergodic and nonergodic processes coexist in the plasma membrane as observed by single-molecule tracking , 2011, Proceedings of the National Academy of Sciences.

[27]  Fawang Liu,et al.  A semi-alternating direction method for a 2-D fractional FitzHugh-Nagumo monodomain model on an approximate irregular domain , 2015, J. Comput. Phys..

[28]  William McLean,et al.  Time-stepping error bounds for fractional diffusion problems with non-smooth initial data , 2014, J. Comput. Phys..

[29]  William McLean,et al.  Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equation , 2009, Numerical Algorithms.

[30]  H. Huang,et al.  Numerical method for two dimensional fractional reaction subdiffusion equation , 2013 .

[31]  R. Gorenflo,et al.  Time Fractional Diffusion: A Discrete Random Walk Approach , 2002 .

[32]  Katja Lindenberg,et al.  Reaction-subdiffusion and reaction-superdiffusion equations for evanescent particles performing continuous-time random walks. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  Rina Schumer,et al.  Fractional advection‐dispersion equations for modeling transport at the Earth surface , 2009 .

[34]  Isaac C. Donnelly,et al.  Pattern Formation on Networks with Reactions: A Continuous Time Random Walk Approach , 2012, 1211.6494.

[35]  Melvin Lax,et al.  Stochastic Transport in a Disordered Solid. I. Theory , 1973 .

[36]  R. Gorenflo,et al.  Discrete random walk models for space-time fractional diffusion , 2002, cond-mat/0702072.

[37]  B. Henry,et al.  The accuracy and stability of an implicit solution method for the fractional diffusion equation , 2005 .

[38]  Alan V. Oppenheim,et al.  Discrete-time Signal Processing. Vol.2 , 2001 .

[39]  S. Fedotov,et al.  Nonlinear degradation-enhanced transport of morphogens performing subdiffusion. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  R. Fisher THE WAVE OF ADVANCE OF ADVANTAGEOUS GENES , 1937 .

[41]  Fawang Liu,et al.  Stability and convergence of an implicit numerical method for the non-linear fractional reaction–subdiffusion process , 2009 .

[43]  Fawang Liu,et al.  Numerical Algorithms for Time-Fractional Subdiffusion Equation with Second-Order Accuracy , 2015, SIAM J. Sci. Comput..

[44]  Xianjuan Li,et al.  A Space-Time Spectral Method for the Time Fractional Diffusion Equation , 2009, SIAM J. Numer. Anal..

[45]  Bruce Ian Henry,et al.  Fractional Cable Equation Models for Anomalous Electrodiffusion in Nerve Cells: Finite Domain Solutions , 2011, SIAM J. Appl. Math..

[46]  Subdiffusion and the cage effect studied near the colloidal glass transition , 2001, cond-mat/0111073.

[47]  Santos B. Yuste,et al.  On an explicit finite difference method for fractional diffusion equations , 2003, ArXiv.

[48]  Changpin Li,et al.  Mixed spline function method for reaction-subdiffusion equations , 2013, J. Comput. Phys..

[49]  Mark M. Meerschaert,et al.  A second-order accurate numerical approximation for the fractional diffusion equation , 2006, J. Comput. Phys..

[50]  S L Wearne,et al.  Anomalous diffusion with linear reaction dynamics: from continuous time random walks to fractional reaction-diffusion equations. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[51]  B. I. Henry,et al.  Continuous Time Random Walks with Reactions Forcing and Trapping , 2013 .

[52]  Santos B. Yuste,et al.  Weighted average finite difference methods for fractional diffusion equations , 2004, J. Comput. Phys..

[53]  Fawang Liu,et al.  New Solution and Analytical Techniques of the Implicit Numerical Method for the Anomalous Subdiffusion Equation , 2008, SIAM J. Numer. Anal..

[54]  Santos B. Yuste,et al.  Fast, accurate and robust adaptive finite difference methods for fractional diffusion equations , 2014, Numerical Algorithms.

[55]  Fawang Liu,et al.  A Fourier method for the fractional diffusion equation describing sub-diffusion , 2007, J. Comput. Phys..

[56]  Sergei Fedotov,et al.  Non-Markovian random walks and nonlinear reactions: subdiffusion and propagating fronts. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.