Computing regularities in strings: A survey
暂无分享,去创建一个
[1] William F. Smyth,et al. Weak repetitions in strings , 1997 .
[2] William F. Smyth,et al. How many runs can a string contain? , 2008, Theor. Comput. Sci..
[3] Costas S. Iliopoulos,et al. Optimal Superprimitivity Testing for Strings , 1991, Inf. Process. Lett..
[4] William F. Smyth,et al. A taxonomy of suffix array construction algorithms , 2007, CSUR.
[5] Giovanni Manzini. Two space saving tricks for linear time LCP computation , 2004 .
[6] Dan Gusfield,et al. Algorithms on Strings, Trees, and Sequences - Computer Science and Computational Biology , 1997 .
[7] Donald E. Knuth,et al. Fast Pattern Matching in Strings , 1977, SIAM J. Comput..
[8] William F. Smyth,et al. A Correction to "An Optimal Algorithm to Compute all the Covers of a String" , 1995, Inf. Process. Lett..
[9] Simon J. Puglisi,et al. The expected number of runs in a word , 2008, Australas. J Comb..
[10] Wojciech Rytter,et al. LPF Computation Revisited , 2009, IWOCA.
[11] William F. Smyth,et al. A New Periodicity Lemma , 2005, SIAM J. Discret. Math..
[12] Wojciech Rytter,et al. Efficient Seeds Computation Revisited , 2011, CPM.
[13] William F. Smyth,et al. Computing Patterns in Strings , 2003 .
[14] Pang Ko,et al. Linear Time Construction of Suffix Arrays , 2002 .
[15] Abraham Lempel,et al. A universal algorithm for sequential data compression , 1977, IEEE Trans. Inf. Theory.
[16] Jens Stoye,et al. Finding Maximal Pairs with Bounded Gap , 1999 .
[17] Frantisek Franek,et al. An Improved Version of the Runs Algorithm Based on Crochemore's Partitioning Algorithm , 2011, Stringology.
[18] Amar Mukherjee,et al. The Burrows-Wheeler Transform:: Data Compression, Suffix Arrays, and Pattern Matching , 2008 .
[19] Mohammad Sohel Rahman,et al. Cache Oblivious Algorithms for the RMQ and the RMSQ Problems , 2010, Math. Comput. Sci..
[20] D. J. Wheeler,et al. A Block-sorting Lossless Data Compression Algorithm , 1994 .
[21] Maxime Crochemore,et al. An Optimal Algorithm for Computing the Repetitions in a Word , 1981, Inf. Process. Lett..
[22] William F. Smyth,et al. Repetitive perhaps, but certainly not boring , 2000, Theor. Comput. Sci..
[23] Giovanni Manzini,et al. Two Space Saving Tricks for Linear Time LCP Array Computation , 2004, SWAT.
[24] Costas S. Iliopoulos,et al. Locating Maximal Multirepeats in Multiple Strings Under Various Constraints , 2007, Comput. J..
[25] Maxime Crochemore,et al. Application of suffix trees for the acquisition of common motifs with gaps in a set of strings , 2007, LATA.
[26] Costas S. Iliopoulos,et al. Faster Algorithms for Computing Maximal Multirepeats in Multiple Sequences , 2009, Fundam. Informaticae.
[27] William F. Smyth,et al. The three squares lemma revisited , 2012, J. Discrete Algorithms.
[28] Costas S. Iliopoulos,et al. Quasiperiodicity: From Detection to Normal Forms , 1998, J. Autom. Lang. Comb..
[29] Costas S. Iliopoulos,et al. Computing the λ-Seeds of a String , 2006 .
[30] Alberto Apostolico,et al. Of Periods, Quasiperiods, Repetitions and Covers , 1997, Structures in Logic and Computer Science.
[31] Kunihiko Sadakane,et al. An Online Algorithm for Finding the Longest Previous Factors , 2008, ESA.
[32] Nicholas Paul Sheppard,et al. On reductions for the Steiner Problem in Graphs , 2003, J. Discrete Algorithms.
[33] Lucian Ilie,et al. Minimum Unique Substrings and Maximum Repeats , 2011, Fundam. Informaticae.
[34] Stefan Kurtz,et al. Reducing the space requirement of suffix trees , 1999 .
[35] William F. Smyth,et al. Computing the covers of a string in linear time , 1994, SODA '94.
[36] William F. Smyth,et al. Fast, Practical Algorithms for Computing All the Repeats in a String , 2010, Math. Comput. Sci..
[37] Francine Blanchet-Sadri. Algorithmic Combinatorics on Partial Words , 2012, Int. J. Found. Comput. Sci..
[38] Costas S. Iliopoulos,et al. A New Approach to Pattern Matching in Degenerate DNA/RNA Sequences and Distributed Pattern Matching , 2008, Math. Comput. Sci..
[39] Christian N. S. Pedersen,et al. Finding Maximal Quasiperiodicities in Strings , 1999, CPM.
[40] Lucian Ilie,et al. A comparison of index-based lempel-Ziv LZ77 factorization algorithms , 2012, CSUR.
[41] Hiroki Arimura,et al. Linear-Time Longest-Common-Prefix Computation in Suffix Arrays and Its Applications , 2001, CPM.
[42] William F. Smyth,et al. An Optimal Algorithm to Compute all the Covers of a String , 1994, Inf. Process. Lett..
[43] Franco P. Preparata,et al. Optimal Off-Line Detection of Repetitions in a String , 1983, Theor. Comput. Sci..
[44] Lucian Ilie,et al. Towards a Solution to the "Runs" Conjecture , 2008, CPM.
[45] Costas S. Iliopoulos,et al. Covering a string , 2005, Algorithmica.
[46] Eugene W. Myers,et al. Suffix arrays: a new method for on-line string searches , 1993, SODA '90.
[47] Alfred V. Aho,et al. The Design and Analysis of Computer Algorithms , 1974 .
[48] Tero Harju,et al. Combinatorics on Words , 2004 .
[49] Richard Cole,et al. The Complexity of the Minimum k-Cover Problem , 2005, J. Autom. Lang. Comb..
[50] Frantisek Franek,et al. A Note on Crochemore's Repetitions Algorithm - A Fast Space-Efficient Approach , 2003, Nord. J. Comput..
[51] Srinivas Aluru,et al. Space efficient linear time construction of suffix arrays , 2003, J. Discrete Algorithms.
[52] James A. M. McHugh,et al. A first approach to finding common motifs with gaps , 2005, Int. J. Found. Comput. Sci..
[53] Peter Weiner,et al. Linear Pattern Matching Algorithms , 1973, SWAT.
[54] Esko Ukkonen,et al. On-line construction of suffix trees , 1995, Algorithmica.
[55] Juha Kärkkäinen,et al. Permuted Longest-Common-Prefix Array , 2009, CPM.
[56] Michael G. Main,et al. An O(n log n) Algorithm for Finding All Repetitions in a String , 1984, J. Algorithms.
[57] Wojciech Rytter,et al. The Number of Runs in a String: Improved Analysis of the Linear Upper Bound , 2006, STACS.
[58] Lucian Ilie,et al. Maximal repetitions in strings , 2008, J. Comput. Syst. Sci..
[59] Stefan Kurtz,et al. Reducing the space requirement of suffix trees , 1999, Softw. Pract. Exp..
[60] Dany Breslauer,et al. An On-Line String Superprimitivity Test , 1992, Inf. Process. Lett..
[61] Yin Li,et al. Computing the Cover Array in Linear Time , 2001, Algorithmica.
[62] Arnaud Lefebvre,et al. Computing Abelian Periods in Words , 2011, Stringology.
[63] Edward M. McCreight,et al. A Space-Economical Suffix Tree Construction Algorithm , 1976, JACM.
[64] Francine Blanchet-Sadri. Algorithmic Combinatorics on Partial Words (Discrete Mathematics and Its Applications) , 2007 .
[65] Gregory Kucherov,et al. Finding repeats with fixed gap , 2000, Proceedings Seventh International Symposium on String Processing and Information Retrieval. SPIRE 2000.
[66] Costas S. Iliopoulos,et al. Covering a String , 1993, CPM.
[67] Sen Zhang,et al. Linear Time Suffix Array Construction Using D-Critical Substrings , 2009, CPM.
[68] Peter Sanders,et al. Simple Linear Work Suffix Array Construction , 2003, ICALP.
[69] Andrzej Ehrenfeucht,et al. Efficient Detection of Quasiperiodicities in Strings , 1993, Theor. Comput. Sci..
[70] H. Wilf,et al. Uniqueness theorems for periodic functions , 1965 .
[71] Abraham Lempel,et al. On the Complexity of Finite Sequences , 1976, IEEE Trans. Inf. Theory.
[72] Costas S. Iliopoulos,et al. On-line algorithms for k-Covering , 1998 .
[73] Frantisek Franek,et al. Computing Quasi Suffix Arrays , 2003, J. Autom. Lang. Comb..
[74] Gang Chen,et al. Fast and Practical Algorithms for Computing All the Runs in a String , 2007, CPM.
[75] Enno Ohlebusch,et al. Replacing suffix trees with enhanced suffix arrays , 2004, J. Discrete Algorithms.
[76] Jamie Simpson. Intersecting periodic words , 2007, Theor. Comput. Sci..
[77] John E. Hopcroft,et al. An n log n algorithm for minimizing states in a finite automaton , 1971 .
[78] Simon J. Puglisi,et al. Space-Time Tradeoffs for Longest-Common-Prefix Array Computation , 2008, ISAAC.
[79] Lucian Ilie,et al. Computing Longest Previous Factor in linear time and applications , 2008, Inf. Process. Lett..
[80] Gregory Kucherov,et al. On Maximal Repetitions in Words , 1999, FCT.
[81] Shu Wang,et al. A new approach to the periodicity lemma on strings with holes , 2009, Theoretical Computer Science.
[82] Frantisek Franek,et al. More results on overlapping squares , 2012, J. Discrete Algorithms.
[83] Raffaele Giancarlo,et al. The Myriad Virtues of Suffix Trees , 2006 .
[84] Johann van der Merwe,et al. A survey on peer-to-peer key management for mobile ad hoc networks , 2007, CSUR.
[85] Gang Chen,et al. Lempel–Ziv Factorization Using Less Time & Space , 2008, Math. Comput. Sci..
[86] William F. Smyth,et al. The maximum number of of runs in a string , 2003, IWOCA 2007.
[87] Jens Stoye,et al. Finding Maximal Pairs with Bounded Gap , 1999, CPM.
[88] Maxime Crochemore,et al. On the Right-Seed Array of a String , 2011, COCOON.
[89] Costas S. Iliopoulos,et al. New complexity results for the k-covers problem , 2011, Inf. Sci..
[90] M. Farach. Optimal suffix tree construction with large alphabets , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.
[91] Jamie Simpson. Modified Padovan words and the maximum number of runs in a word , 2010, Australas. J Comb..
[92] Wojciech Rytter,et al. A Linear-Time Algorithm for Seeds Computation , 2011, SODA.
[93] William F. Smyth,et al. Fast Optimal Algorithms for Computing All the Repeats in a String , 2008, Stringology.
[94] Wojciech Rytter,et al. Squares, cubes, and time-space efficient string searching , 1995, Algorithmica.
[95] Michael G. Main,et al. Detecting leftmost maximal periodicities , 1989, Discret. Appl. Math..
[96] Frantisek Franek,et al. Computing all Repeats Using Suffix Arrays , 2003, J. Autom. Lang. Comb..
[97] Edward Fredkin,et al. Trie memory , 1960, Commun. ACM.
[98] Gwénaël Richomme,et al. Optimality of some algorithms to detect quasiperiodicities , 2010, Theor. Comput. Sci..
[99] Mathieu Giraud,et al. Not So Many Runs in Strings , 2008, LATA.
[100] Lucian Ilie,et al. A Simple Algorithm for Computing the Lempel Ziv Factorization , 2008, Data Compression Conference (dcc 2008).
[101] Jean Berstel,et al. Partial Words and a Theorem of Fine and Wilf , 1999, Theor. Comput. Sci..
[102] Hideo Bannai,et al. New Lower Bounds for the Maximum Number of Runs in a String , 2008, Stringology.
[103] Gregory Kucherov,et al. Finding maximal repetitions in a word in linear time , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).
[104] M. Crochemore,et al. On-line construction of suffix trees , 2002 .
[105] Costas S. Iliopoulos,et al. String Regularities with Don't Cares , 2003, Nord. J. Comput..