Strichartz estimates for homogeneous repulsive potentials

The homogeneous repulsive potentials accelerate a quantum particle and the velocity of the particle increases exponentially in $t$; this phenomenon yields the fast decaying dispersive estimates and hence we consider the Strichartz estimates associated with this phenomenon. First, we consider the free repulsive Hamiltonian and prove that the Strichartz estimates hold for every admissible pairs $(q,r)$, which satisfy $1/q +n/(2r) \geq n/4$ with $q$, $r \geq 2$. Second, we consider the perturbed repulsive Hamiltonian with the slowly decaying potential such that $|V(x)| \leq C(1+|x|)^{-\delta}$ for some $\delta >0$, and prove the Strichartz estimate with the same admissible pairs for the free case.

[1]  E. Cordero,et al.  Strichartz Estimates for the Schrödinger Equation , 2018, 1807.07861.

[2]  Masaki Kawamoto,et al.  Strichartz estimates for harmonic potential with time-decaying coefficient , 2018 .

[3]  H. Mizutani Remarks on endpoint Strichartz estimates for Schr\"odinger equations with the critical inverse-square potential , 2016, 1607.02848.

[4]  Atsuhide Ishida The borderline of the short-range condition for the repulsive Hamiltonian , 2016 .

[5]  P. D’Ancona Kato Smoothing and Strichartz Estimates for Wave Equations with Magnetic Potentials , 2014, 1403.2537.

[6]  L. Vega,et al.  Some dispersive estimates for Schrödinger equations with repulsive potentials , 2006 .

[7]  L. Vega,et al.  Counterexamples of Strichartz Inequalities for Schrodinger Equations with Repulsive Potentials , 2006, math/0602257.

[8]  N. Tzvetkov,et al.  Strichartz estimates for long range perturbations , 2005, math/0509489.

[9]  N. Visciglia,et al.  Some remarks on the Schrödinger equation with a potential in LrtLsx , 2005 .

[10]  N. Visciglia,et al.  Some remarks on the Schr\"odinger equation with a potential in $L^{r}_{t}L^{s}_{x}$ , 2005, math/0501125.

[11]  N. Burq,et al.  Strichartz estimates for the Wave and Schrodinger Equations with Potentials of Critical Decay , 2004, math/0401019.

[12]  W. Schlag,et al.  Dispersive Estimates for Schrödinger Operators in Dimensions One and Three , 2003, math/0306108.

[13]  R. Carles Nonlinear Schrödinger Equations with Repulsive Harmonic Potential and Applications , 2002, SIAM J. Math. Anal..

[14]  N. Burq,et al.  Strichartz estimates for the wave and Schrödinger equations with the inverse-square potential , 2002, math/0207152.

[15]  Guoping Zhang,et al.  Local smoothing property and Strichartz inequality for Schrodinger equations with potentials superquadratic at infinity (スペクトル・散乱理論とその周辺 研究集会報告集) , 2002 .

[16]  W. Schlag,et al.  Time decay for solutions of Schrödinger equations with rough and time-dependent potentials , 2001, math/0110098.

[17]  L. Hörmander Symplectic classification of quadratic forms, and general Mehler formulas , 1995 .

[18]  J. Ginibre,et al.  Smoothing properties and retarded estimates for some dispersive evolution equations , 1992 .

[19]  A. Soffer,et al.  Decay estimates for Schrödinger operators , 1991 .

[20]  K. Yajima Existence of solutions for Schrödinger evolution equations , 1987 .

[21]  K. Yajima Scattering theory for Schrödinger equations with potentials periodic in time , 1977 .

[22]  Robert S. Strichartz,et al.  Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations , 1977 .

[23]  敏夫 加藤,et al.  Wave operators and similarity for some non-selfadjoint operators , 1966 .

[24]  Tosio Kato,et al.  Wave operators and similarity for some non-selfadjoint operators , 1966 .

[25]  D. Fang,et al.  Local smoothing effect on the Schrödinger equation with harmonic potential , 2014 .

[26]  Vittoria Pierfelice,et al.  Strichartz estimates for the Schrödinger and heat equations perturbed with singular and time dependent potentials , 2006, Asymptot. Anal..

[27]  E. Mourre Absence of singular continuous spectrum for certain self-adjoint operators , 1981 .