Strichartz estimates for homogeneous repulsive potentials
暂无分享,去创建一个
[1] E. Cordero,et al. Strichartz Estimates for the Schrödinger Equation , 2018, 1807.07861.
[2] Masaki Kawamoto,et al. Strichartz estimates for harmonic potential with time-decaying coefficient , 2018 .
[3] H. Mizutani. Remarks on endpoint Strichartz estimates for Schr\"odinger equations with the critical inverse-square potential , 2016, 1607.02848.
[4] Atsuhide Ishida. The borderline of the short-range condition for the repulsive Hamiltonian , 2016 .
[5] P. D’Ancona. Kato Smoothing and Strichartz Estimates for Wave Equations with Magnetic Potentials , 2014, 1403.2537.
[6] L. Vega,et al. Some dispersive estimates for Schrödinger equations with repulsive potentials , 2006 .
[7] L. Vega,et al. Counterexamples of Strichartz Inequalities for Schrodinger Equations with Repulsive Potentials , 2006, math/0602257.
[8] N. Tzvetkov,et al. Strichartz estimates for long range perturbations , 2005, math/0509489.
[9] N. Visciglia,et al. Some remarks on the Schrödinger equation with a potential in LrtLsx , 2005 .
[10] N. Visciglia,et al. Some remarks on the Schr\"odinger equation with a potential in $L^{r}_{t}L^{s}_{x}$ , 2005, math/0501125.
[11] N. Burq,et al. Strichartz estimates for the Wave and Schrodinger Equations with Potentials of Critical Decay , 2004, math/0401019.
[12] W. Schlag,et al. Dispersive Estimates for Schrödinger Operators in Dimensions One and Three , 2003, math/0306108.
[13] R. Carles. Nonlinear Schrödinger Equations with Repulsive Harmonic Potential and Applications , 2002, SIAM J. Math. Anal..
[14] N. Burq,et al. Strichartz estimates for the wave and Schrödinger equations with the inverse-square potential , 2002, math/0207152.
[15] Guoping Zhang,et al. Local smoothing property and Strichartz inequality for Schrodinger equations with potentials superquadratic at infinity (スペクトル・散乱理論とその周辺 研究集会報告集) , 2002 .
[16] W. Schlag,et al. Time decay for solutions of Schrödinger equations with rough and time-dependent potentials , 2001, math/0110098.
[17] L. Hörmander. Symplectic classification of quadratic forms, and general Mehler formulas , 1995 .
[18] J. Ginibre,et al. Smoothing properties and retarded estimates for some dispersive evolution equations , 1992 .
[19] A. Soffer,et al. Decay estimates for Schrödinger operators , 1991 .
[20] K. Yajima. Existence of solutions for Schrödinger evolution equations , 1987 .
[21] K. Yajima. Scattering theory for Schrödinger equations with potentials periodic in time , 1977 .
[22] Robert S. Strichartz,et al. Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations , 1977 .
[23] 敏夫 加藤,et al. Wave operators and similarity for some non-selfadjoint operators , 1966 .
[24] Tosio Kato,et al. Wave operators and similarity for some non-selfadjoint operators , 1966 .
[25] D. Fang,et al. Local smoothing effect on the Schrödinger equation with harmonic potential , 2014 .
[26] Vittoria Pierfelice,et al. Strichartz estimates for the Schrödinger and heat equations perturbed with singular and time dependent potentials , 2006, Asymptot. Anal..
[27] E. Mourre. Absence of singular continuous spectrum for certain self-adjoint operators , 1981 .