A Testing Theory for Generally Distributed Stochastic Processes

In this paper we present a testing theory for stochastic processes. This theory is developed to deal with processes which probability distributions are not restricted to be exponential. In order to define this testing semantics, we compute the probability with which a process passes a test before an amount of time has elapsed. Two processes will be equivalent if they return the same probabilities for any test T and any time t. The key idea consists in joining all the random variables associated with the computations that the composition of process and test may perform. The combination of the values that this random variable takes and the probabilities of executing the actions belonging to the computation will give us the desired probabilities. Finally, we relate our stochastic testing semantics with other notions of testing.

[1]  Hans A. Hansson Time and probability in formal design of distributed systems , 1991, DoCS.

[2]  Peter G. Harrison,et al.  SPADES - a process algebra for discrete event simulation , 2000, J. Log. Comput..

[3]  Bernhard Steffen,et al.  Reactive, Generative and Stratified Models of Probabilistic Processes , 1995, Inf. Comput..

[4]  Joost-Pieter Katoen,et al.  Process algebra for performance evaluation , 2002, Theor. Comput. Sci..

[5]  Gavin Lowe,et al.  Probabilistic and Prioritized Models of Timed CSP , 1995, Theor. Comput. Sci..

[6]  Joseph Sifakis,et al.  The Algebra of Timed Processes, ATP: Theory and Application , 1994, Inf. Comput..

[7]  Norbert Götz,et al.  Multiprocessor and Distributed System Design: The Integration of Functional Specification and Performance Analysis Using Stochastic Process Algebras , 1993, Performance/SIGMETRICS Tutorials.

[8]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.

[9]  M. Kwiatkowska,et al.  Solving Infinite Stochastic Process Algebra Models Through Matrix-Geometric Methods , 1999 .

[10]  Mario Bravetti,et al.  Towards Performance Evaluation with General Distributions in Process Algebras , 1998, CONCUR.

[11]  David de Frutos-Escrig,et al.  Denotational Semantics for Timed Testing , 1997, ARTS.

[12]  Marta Z. Kwiatkowska,et al.  A Testing Equivalence for Reactive Probabilistic Processes , 1998, EXPRESS.

[13]  Manuel Núñez,et al.  Fair Testing through Probabilistic Testing , 1999, FORTE.

[14]  Manuel Núñez García Semánticas de pruebas para álgebras de procesos probabilísticos , 1996 .

[15]  Manuel Núñez,et al.  Acceptance Trees for Probabilistic Processes , 1995, CONCUR.

[16]  Mario Bravetti,et al.  The theory of interactive generalized semi-Markov processes , 2002, Theor. Comput. Sci..

[17]  Manuel Núñez,et al.  Denotational Semantics for Probabilistic Refusal Testing , 1998, PROBMIV.

[18]  Robin Milner,et al.  A Modal Characterisation of Observable Machine-Behaviour , 1981, CAAP.

[19]  Matthew Hennessy,et al.  A Process Algebra for Timed Systems , 1995, Inf. Comput..

[20]  Marco Ajmone Marsan,et al.  A LOTOS extension for the performance analysis of distributed systems , 1994, TNET.

[21]  Wang Yi,et al.  Testing Probabilistic and Nondeterministic Processes , 1992, PSTV.

[22]  Jane Hillston,et al.  A compositional approach to performance modelling , 1996 .

[23]  Rance Cleaveland,et al.  Testing Preorders for Probabilistic Processes , 1992, Inf. Comput..

[24]  Rocco De Nicola,et al.  Testing Equivalences for Processes , 1984, Theor. Comput. Sci..

[25]  A. W. Roscoe,et al.  A Timed Model for Communicating Sequential Processes , 1986, Theor. Comput. Sci..

[26]  Kim G. Larsen,et al.  Bisimulation through Probabilistic Testing , 1991, Inf. Comput..

[27]  Diego Latella,et al.  A Stochastic Causality-Based Process Algebra , 1995, Comput. J..

[28]  Rance Cleaveland,et al.  A Theory of Testing for Soft Real-Time Processes , 1996, SEKE.

[29]  Joost-Pieter Katoen,et al.  An algebraic approach to the specification of stochastic systems , 1998, PROCOMET.

[30]  Rance Cleaveland,et al.  A Theory of Testing for Markovian Processes , 2000, CONCUR.

[31]  C. A. R. Hoare,et al.  Communicating sequential processes , 1978, CACM.

[32]  Matthew Hennessy,et al.  Algebraic theory of processes , 1988, MIT Press series in the foundations of computing.

[33]  Ivan Christoff,et al.  Testing Equivalences and Fully Abstract Models for Probabilistic Processes , 1990, CONCUR.

[34]  Luis Llana,et al.  Testing Semantics for a Probabilistic-Timed Process Algebra , 1997, ARTS.

[35]  David de Frutos-Escrig,et al.  Testing Semantics for Probabilistic LOTOS , 1995, FORTE.

[36]  Roberto Gorrieri,et al.  A Tutorial on EMPA: A Theory of Concurrent Processes with Nondeterminism, Priorities, Probabilities and Time , 1998, Theor. Comput. Sci..