Quantum Eigenvalue Estimation for Irreducible Non-negative Matrices

Quantum phase estimation algorithm has been successfully adapted as a sub frame of many other algorithms applied to a wide variety of applications in different fields. However, the requirement of a good approximate eigenvector given as an input to the algorithm hinders the application of the algorithm to the problems where we do not have any prior knowledge about the eigenvector. In this paper, we show that the principal eigenvalue of an irreducible non-negative operator can be determined by using an equal superposition initial state in the phase estimation algorithm. This removes the necessity of the existence of an initial good approximate eigenvector. Moreover, we show that the success probability of the algorithm is related to the closeness of the operator to a stochastic matrix. Therefore, we draw an estimate for the success probability by using the variance of the column sums of the operator. This provides a priori information which can be used to know the success probability of the algorithm beforehand for the non-negative matrices and apply the algorithm only in cases when the estimated probability reasonably high. Finally, we discuss the possible applications and show the results for random symmetric matrices and 3-local Hamiltonians with non-negative off-diagonal elements.

[1]  Kathy P. Wheeler,et al.  Reviews of Modern Physics , 2013 .

[2]  Julia Kempe,et al.  The Complexity of the Local Hamiltonian Problem , 2004, FSTTCS.

[3]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[4]  J. Vartiainen,et al.  Efficient decomposition of quantum gates. , 2003, Physical review letters.

[5]  Gerta Rücker,et al.  On Walks in Molecular Graphs , 2001, J. Chem. Inf. Comput. Sci..

[6]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[7]  数理科学社,et al.  数理科学 = Mathematical sciences , 1963 .

[8]  B. Lanyon,et al.  Towards quantum chemistry on a quantum computer. , 2009, Nature chemistry.

[9]  N. Higham MATRIX NEARNESS PROBLEMS AND APPLICATIONS , 1989 .

[10]  J. Pittner,et al.  Quantum computing applied to calculations of molecular energies: CH2 benchmark. , 2010, The Journal of chemical physics.

[11]  Henryk Minc,et al.  On the Maximal Eigenvector of a Positive Matrix , 1970 .

[12]  F. Nori,et al.  Quantum Simulation , 2013, Quantum Atom Optics.

[13]  Axel Ruhe Closest normal matrix finally found! , 1987 .

[14]  Yihong Du,et al.  Order Structure and Topological Methods in Nonlinear Partial Differential Equations: Vol. 1: Maximum Principles and Applications , 2006 .

[15]  Sabre Kais,et al.  Decomposition of Unitary Matrices for Finding Quantum Circuits , 2010, The Journal of chemical physics.

[16]  Franco Nori,et al.  Quantum algorithm for obtaining the energy spectrum of a physical system , 2012 .

[17]  Franco Nori,et al.  QuTiP: An open-source Python framework for the dynamics of open quantum systems , 2011, Comput. Phys. Commun..

[18]  A. W.,et al.  Journal of chemical information and computer sciences. , 1995, Environmental science & technology.

[19]  October I Physical Review Letters , 2022 .

[20]  Barbara M. Terhal,et al.  Complexity of Stoquastic Frustration-Free Hamiltonians , 2008, SIAM J. Comput..

[21]  T. Raghavan,et al.  Nonnegative Matrices and Applications , 1997 .

[22]  K. Efetov Directed Quantum Chaos , 1997, cond-mat/9702091.

[23]  J. Whitfield,et al.  Simulating chemistry using quantum computers. , 2010, Annual review of physical chemistry.

[24]  Gilles Brassard,et al.  Strengths and Weaknesses of Quantum Computing , 1997, SIAM J. Comput..

[25]  David P. DiVincenzo,et al.  The complexity of stoquastic local Hamiltonian problems , 2006, Quantum Inf. Comput..

[26]  Alexei Y. Kitaev,et al.  Quantum measurements and the Abelian Stabilizer Problem , 1995, Electron. Colloquium Comput. Complex..

[27]  Seth Lloyd,et al.  Quantum Information Processing , 2009, Encyclopedia of Complexity and Systems Science.

[28]  P. Love,et al.  Quantum-Merlin-Arthur-complete problems for stoquastic Hamiltonians and Markov matrices , 2009, 0905.4755.

[29]  S. Lloyd,et al.  Quantum Algorithm Providing Exponential Speed Increase for Finding Eigenvalues and Eigenvectors , 1998, quant-ph/9807070.

[30]  F. Nori,et al.  Measurement-based quantum phase estimation algorithm for finding eigenvalues of non-unitary matrices , 2009, 0906.2538.

[31]  Alán Aspuru-Guzik,et al.  Quantum algorithm for obtaining the energy spectrum of molecular systems. , 2008, Physical chemistry chemical physics : PCCP.

[32]  F. Nori,et al.  Quantum phase estimation algorithms with delays: effects of dynamical phases , 2003, quant-ph/0305038.

[33]  Xinhua Peng,et al.  Quantum chemistry simulation on quantum computers: theories and experiments. , 2012, Physical chemistry chemical physics : PCCP.

[34]  I. Kassal,et al.  Polynomial-time quantum algorithm for the simulation of chemical dynamics , 2008, Proceedings of the National Academy of Sciences.

[35]  Carl D. Meyer,et al.  Matrix Analysis and Applied Linear Algebra , 2000 .

[36]  Ananth Grama,et al.  A universal quantum circuit scheme for finding complex eigenvalues , 2013, Quantum Information Processing.

[37]  M. Head‐Gordon,et al.  Simulated Quantum Computation of Molecular Energies , 2005, Science.

[38]  J. Keller Closest Unitary, Orthogonal and Hermitian Operators to a Given Operator , 1975 .

[39]  Franco Nori,et al.  QuTiP 2: A Python framework for the dynamics of open quantum systems , 2012, Comput. Phys. Commun..

[40]  Ananth Grama,et al.  Multiple network alignment on quantum computers , 2013, Quantum Information Processing.