Mixed Anion Semiconductor In8S2.82Te6.18(Te2)3.

The new heteroanionic compound In8S2.82Te6.18(Te2)3 crystallizes in the monoclinic space group C2/c with lattice parameters a = 14.2940(6) Å, b = 14.3092(4) Å, c = 14.1552(6) Å, and β = 90.845(3)°. The three-dimensional (3D) framework of In8S2.82Te6.18(Te2)3 is composed of a complex 3D network of corner-connected InQ4 tetrahedra with three Te22- dumbbell dimers per formula unit. The optical bandgap is 1.12(2) eV and the work function is 5.15(5) eV. First-principles electronic structure calculations using density functional theory (DFT) indicate that this material has potential as a p-type thermoelectric material as it is a narrow bandgap semiconductor, incorporates several heavy elements, and has multiple overlapping bands near the valence band maximum.

[1]  Jin Koo Kim,et al.  Recent Advances in Heterostructured Anode Materials with Multiple Anions for Advanced Alkali‐Ion Batteries , 2021, Advanced Energy Materials.

[2]  Yan-Yan Li,et al.  Mixed-Anion Inorganic Compounds: A Favorable Candidate for Infrared Nonlinear Optical Materials , 2019, Crystal Growth & Design.

[3]  Jaye K. Harada,et al.  Heteroanionic Materials by Design: Progress Toward Targeted Properties , 2019, Advanced materials.

[4]  Huaiguo Xue,et al.  Second-order nonlinear optical crystals with mixed anions , 2018, Coordination Chemistry Reviews.

[5]  M. Kanatzidis,et al.  Two-Dimensional CsAg5Te3–xSx Semiconductors: Multi-anion Chalcogenides with Dynamic Disorder and Ultralow Thermal Conductivity , 2018, Chemistry of Materials.

[6]  Jin Zou,et al.  Fundamental and progress of Bi2Te3-based thermoelectric materials* , 2018, 1803.03386.

[7]  J. Attfield,et al.  Expanding frontiers in materials chemistry and physics with multiple anions , 2018, Nature Communications.

[8]  G. J. Snyder,et al.  Resonant Bonding, Multiband Thermoelectric Transport, and Native Defects in n-Type BaBiTe3–xSex (x = 0, 0.05, and 0.1) , 2018 .

[9]  A. Assoud,et al.  A Polyselenide with a Novel Se78– Unit: the Structure of Sr19–xPbxGe11Se44 with x = 5.0 and 6.4 , 2017 .

[10]  M. Kanatzidis Discovery-Synthesis, Design, and Prediction of Chalcogenide Phases. , 2017, Inorganic chemistry.

[11]  K. Yamashita,et al.  Anion Ordering in CaTaO2N: Structural Impact on the Photocatalytic Activity. Insights from First-Principles , 2017 .

[12]  M. Valldor Anion Ordering in Bichalcogenides , 2016 .

[13]  D. Yamashita,et al.  In situ measurements of change in work function of Pt, Pd and Au surfaces during desorption of oxygen by using photoemission yield spectrometer in air , 2016 .

[14]  I. Tanaka,et al.  First principles phonon calculations in materials science , 2015, 1506.08498.

[15]  David J. Singh,et al.  Ba2TeO: A new layered oxytelluride , 2015 .

[16]  W. Cheng,et al.  Syntheses, crystal and electronic structures, and characterizations of the mixed anions compounds Ba4In2Te2Q5 (Q = S, Se) , 2013 .

[17]  W. Sheldrick Polychalcogenide Anions: Structural Diversity and Ligand Versatility , 2012 .

[18]  A. Assoud,et al.  New barium copper chalcogenides synthesized using two different chalcogen atoms: Ba2Cu(6-x)STe4 and Ba2Cu(6-x)Se(y)Te(5-y). , 2011, Inorganic chemistry.

[19]  M. Kanatzidis,et al.  {[Ga(en)3]2(Ge2Te15)}n: a polymeric semiconducting polytelluride with boat-shaped Te8(4-) rings and cross-shaped Te5(6-) units. , 2009, Inorganic chemistry.

[20]  P. Adamson,et al.  Structures, physical properties, and chemistry of layered oxychalcogenides and oxypnictides. , 2008, Inorganic chemistry.

[21]  David J. Singh,et al.  BoltzTraP. A code for calculating band-structure dependent quantities , 2006, Comput. Phys. Commun..

[22]  T. Tritt,et al.  Enhancement of the power factor of the transition metal pentatelluride HfTe5 by rare-earth doping , 2006 .

[23]  A. Assoud,et al.  Electronic Structure and Physical Properties of the Semiconducting Polytelluride Ba2SnTe5 with a Unique Te54- Unit , 2004 .

[24]  D. Billing,et al.  Rietveld refinement of In2S3 using neutron and X-ray powder diffraction data , 2004 .

[25]  M. Kanatzidis,et al.  Polytelluride compounds containing distorted nets of tellurium , 2002 .

[26]  X. Chen,et al.  Rb(4)Hg(5)(Te(2))(2)(Te(3))(2)Te(3), [Zn(en)3](4)In(16)(Te2)4(Te3)Te22, and K2Cu2(Te2)(Te3): novel metal polytellurides with unusual metal-tellurium coordination. , 2001, Inorganic chemistry.

[27]  J. Ibers,et al.  Syntheses, Structures, and Theoretical Study of LaCuSTe and SmCuSTe. , 1999, Inorganic chemistry.

[28]  M. Kanatzidis,et al.  Oligomerization Versus Polymerization of Texn- in the Polytelluride Compound BaBiTe3. Structural Characterization, Electronic Structure, and Thermoelectric Properties , 1997 .

[29]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[30]  M. Potel,et al.  Crystal structure, magnetic and electrical transport studies of single crystals of the uranium mixed chalcogenides: USSe, USte and USeTe , 1994 .

[31]  M. Kanatzidis,et al.  AMTeS3 (A=K, Rb, Cs; M=Cu, Ag) : a new class of compounds based on a new polychalcogenide anion, TeS32- , 1994 .

[32]  A. Mar,et al.  The layered ternary germanium tellurides ZrGeTe4, HfGeTe4, and TiGeTe6: structure, bonding, and physical properties , 1993 .

[33]  D. Fenske,et al.  Die Kristallstrukturen der Polytelluride [Ca(DMF)6]Te4, [Sr(15-Krone-5)2]Te4 · H2O, {[BaCl(18-Krone-6)(DMF)2]2[BaCl(18-Krone-6)(DMF) (H2O)]2(Te4)2} und [Ph3PNPPh3]2Te5 · 2 DMF , 1993 .

[34]  M. Kanatzidis Molten alkali-metal polychalcogenides as reagents and solvents for the synthesis of new chalcogenide materials , 1990 .

[35]  P. Böttcher Tellurium‐Rich Tellurides , 1988 .

[36]  M. Guittard,et al.  Oxysulfides and oxyselenides in sheets, formed by a rare earth element and a second metal , 1984 .

[37]  J. Woolley,et al.  The ordered crystal structure of In2Te3 , 1959 .

[38]  W. Hume-rothery,et al.  On the Theory of Super-Lattice Structures in Alloys , 1935 .

[39]  M. Kanatzidis,et al.  Distorted Square Nets of Tellurium in the Novel Quaternary Polytelluride K0.33Ba0.67AgTe2 , 1995 .

[40]  C. Swahn,et al.  THE CRYSTAL STRUCTURE OF HFTE5 , 1973 .