Some Good Cyclic and Quasi-Twisted Z4-Linear Codes

For over a decade, there has been considerable research on codes over Z4 and other rings. In spite of this, no tables or databases exist for codes over Z4, as is the case with codes over finite fields. The purpose of this work is to contribute to the creation of such a database. We consider cyclic, negacyclic and quasi-twisted (QT) codes over Z4. Some of these codes have binary images with better parameters than the best-known binary linear codes. We call such codes “good codes”. Among these are two codes which improve the bounds on the best-known binary non-linear codes. Tables of best cyclic and QT codes over Z4 are presented.

[1]  T. Aaron Gulliver,et al.  New good quasi-cyclic ternary and quaternary linear codes , 1997, IEEE Trans. Inf. Theory.

[2]  Fred W. Glover,et al.  Tabu Search - Part I , 1989, INFORMS J. Comput..

[3]  Yuan Zhou Introduction to Coding Theory , 2010 .

[4]  John N. C. Wong,et al.  OPTIMAL LINEAR CODES OVER ℤ m , 2007 .

[5]  Vera Pless,et al.  All self-dual Z/sub 4/ codes of length 15 or less are known , 1997, Proceedings of IEEE International Symposium on Information Theory.

[6]  A. Nechaev,et al.  Kerdock code in a cyclic form , 1989 .

[7]  A. Robert Calderbank,et al.  Construction of a (64, 2 37, 12) Code via Galois Rings , 1997, Des. Codes Cryptogr..

[8]  T. Aaron Gulliver,et al.  Classification of Optimal Linear Z4 Rate 1/2 Codes of Length <= 8 , 2007, Ars Comb..

[9]  Patric R. J. Östergård,et al.  New Binary Linear Codes , 2000, Ars Comb..

[10]  Dwijendra K. Ray-Chaudhuri,et al.  New ternary quasi-cyclic codes with better minimum distances , 2000, IEEE Trans. Inf. Theory.

[11]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[12]  Dwijendra K. Ray-Chaudhuri,et al.  The Structure of 1-Generator Quasi-Twisted Codes and New Linear Codes , 2001, Des. Codes Cryptogr..

[13]  Fred S. Roberts,et al.  Applied Combinatorics , 1984 .

[14]  Jon-Lark Kim,et al.  New MDS or Near-MDS Self-Dual Codes , 2008, IEEE Transactions on Information Theory.

[15]  Thomas Blackford Cyclic Codes Over Z4 of Oddly Even Length , 2003, Discret. Appl. Math..

[16]  Vera Pless,et al.  Cyclic codes and quadratic residue codes over Z4 , 1996, IEEE Trans. Inf. Theory.

[17]  Thomas Blackford,et al.  Cyclic Codes Over Z4 of Oddly Even Length , 2001, Discret. Appl. Math..

[18]  Jacobus H. van Lint,et al.  Introduction to Coding Theory , 1982 .

[19]  T. Aaron Gulliver,et al.  New ternary linear codes , 1999, IEEE Trans. Inf. Theory.

[20]  R. Hill,et al.  Optimal ternary quasi-cyclic codes , 1992, Des. Codes Cryptogr..

[21]  Zhe-Xian X. Wan,et al.  Quaternary Codes , 1997 .

[22]  N. J. A. Sloane,et al.  The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.

[23]  Eric M. Rains Optimal self-dual codes over Z4 , 1999, Discret. Math..

[24]  Thomas Blackford,et al.  Negacyclic codes over Z4 of even length , 2003, IEEE Trans. Inf. Theory.

[25]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[26]  Dwijendra K. Ray-Chaudhuri,et al.  Quasi-cyclic codes over Z4 and some new binary codes , 2002, IEEE Trans. Inf. Theory.

[27]  N. J. A. Sloane,et al.  Self-Dual Codes over the Integers Modulo 4 , 1993, J. Comb. Theory, Ser. A.

[28]  Vijay K. Bhargava,et al.  Some best rate 1/p and rate (p-1)/p systematic quasi-cyclic codes , 1991, IEEE Trans. Inf. Theory.

[29]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[30]  Vera Pless,et al.  All Z4 Codes of Type II and Length 16 Are Known , 1997, J. Comb. Theory, Ser. A.