Some Good Cyclic and Quasi-Twisted Z4-Linear Codes
暂无分享,去创建一个
[1] T. Aaron Gulliver,et al. New good quasi-cyclic ternary and quaternary linear codes , 1997, IEEE Trans. Inf. Theory.
[2] Fred W. Glover,et al. Tabu Search - Part I , 1989, INFORMS J. Comput..
[3] Yuan Zhou. Introduction to Coding Theory , 2010 .
[4] John N. C. Wong,et al. OPTIMAL LINEAR CODES OVER ℤ m , 2007 .
[5] Vera Pless,et al. All self-dual Z/sub 4/ codes of length 15 or less are known , 1997, Proceedings of IEEE International Symposium on Information Theory.
[6] A. Nechaev,et al. Kerdock code in a cyclic form , 1989 .
[7] A. Robert Calderbank,et al. Construction of a (64, 2 37, 12) Code via Galois Rings , 1997, Des. Codes Cryptogr..
[8] T. Aaron Gulliver,et al. Classification of Optimal Linear Z4 Rate 1/2 Codes of Length <= 8 , 2007, Ars Comb..
[9] Patric R. J. Östergård,et al. New Binary Linear Codes , 2000, Ars Comb..
[10] Dwijendra K. Ray-Chaudhuri,et al. New ternary quasi-cyclic codes with better minimum distances , 2000, IEEE Trans. Inf. Theory.
[11] O. Antoine,et al. Theory of Error-correcting Codes , 2022 .
[12] Dwijendra K. Ray-Chaudhuri,et al. The Structure of 1-Generator Quasi-Twisted Codes and New Linear Codes , 2001, Des. Codes Cryptogr..
[13] Fred S. Roberts,et al. Applied Combinatorics , 1984 .
[14] Jon-Lark Kim,et al. New MDS or Near-MDS Self-Dual Codes , 2008, IEEE Transactions on Information Theory.
[15] Thomas Blackford. Cyclic Codes Over Z4 of Oddly Even Length , 2003, Discret. Appl. Math..
[16] Vera Pless,et al. Cyclic codes and quadratic residue codes over Z4 , 1996, IEEE Trans. Inf. Theory.
[17] Thomas Blackford,et al. Cyclic Codes Over Z4 of Oddly Even Length , 2001, Discret. Appl. Math..
[18] Jacobus H. van Lint,et al. Introduction to Coding Theory , 1982 .
[19] T. Aaron Gulliver,et al. New ternary linear codes , 1999, IEEE Trans. Inf. Theory.
[20] R. Hill,et al. Optimal ternary quasi-cyclic codes , 1992, Des. Codes Cryptogr..
[21] Zhe-Xian X. Wan,et al. Quaternary Codes , 1997 .
[22] N. J. A. Sloane,et al. The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.
[23] Eric M. Rains. Optimal self-dual codes over Z4 , 1999, Discret. Math..
[24] Thomas Blackford,et al. Negacyclic codes over Z4 of even length , 2003, IEEE Trans. Inf. Theory.
[25] John J. Cannon,et al. The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..
[26] Dwijendra K. Ray-Chaudhuri,et al. Quasi-cyclic codes over Z4 and some new binary codes , 2002, IEEE Trans. Inf. Theory.
[27] N. J. A. Sloane,et al. Self-Dual Codes over the Integers Modulo 4 , 1993, J. Comb. Theory, Ser. A.
[28] Vijay K. Bhargava,et al. Some best rate 1/p and rate (p-1)/p systematic quasi-cyclic codes , 1991, IEEE Trans. Inf. Theory.
[29] Fred Glover,et al. Tabu Search - Part II , 1989, INFORMS J. Comput..
[30] Vera Pless,et al. All Z4 Codes of Type II and Length 16 Are Known , 1997, J. Comb. Theory, Ser. A.