Varietal classification of maize seeds using computer vision and machine learning techniques

[1]  Weijun Xie,et al.  Research on Carrot Grading Based on Machine Vision Feature Parameters , 2019, IFAC-PapersOnLine.

[2]  İsmail Öztürk,et al.  Seed Size and Shape Analysis of Registered Common Bean (Phaseolus vulgaris L.) Cultivars in Turkey Using Digital Photography , 2013 .

[3]  N. Ahmed,et al.  Automated analysis of visual leaf shape features for plant classification , 2019, Comput. Electron. Agric..

[4]  Nadia Ansari,et al.  Inspection of paddy seed varietal purity using machine vision and multivariate analysis , 2021 .

[5]  Vincent Baeten,et al.  Hyperspectral Imaging Applications in Agriculture and Agro-Food Product Quality and Safety Control: A Review , 2013 .

[6]  J. G. Hampton,et al.  What is seed quality , 2002 .

[7]  M. N. Sulaiman,et al.  A Review On Evaluation Metrics For Data Classification Evaluations , 2015 .

[8]  Hui Chen,et al.  Determining the number of factors in approximate factor models by twice K-fold cross validation , 2020 .

[9]  A. Kahraman,et al.  The Impacts of Environment on Plant Products , 2012 .

[10]  P. Mangelsdorf,et al.  Origin of Maize , 1940, Nature.

[11]  Şemsettin Kulaç,et al.  The effect of pre-treatments and seed collection time on the germination characteristics of common hornbeam (Carpinus betulus) seeds in the Eastern Black Sea Region, Turkey , 2015 .

[12]  Pablo M. Granitto,et al.  Large-scale investigation of weed seed identification by machine vision , 2005 .

[13]  Kadir Sabanci,et al.  Computer vision-based method for classification of wheat grains using artificial neural network. , 2017, Journal of the science of food and agriculture.

[14]  Jianhua Wang,et al.  Selection for high quality pepper seeds by machine vision and classifiers , 2018, Journal of Integrative Agriculture.

[15]  Ilker Ali Ozkan,et al.  Multiclass classification of dry beans using computer vision and machine learning techniques , 2020, Comput. Electron. Agric..

[16]  Fardad Farokhi,et al.  Classification of rice grain varieties using two artificial neural networks (MLP and neuro-fuzzy). , 2014 .

[17]  N. S. Visen,et al.  AE—Automation and Emerging Technologies: Evaluation of Neural Network Architectures for Cereal Grain Classification using Morphological Features , 2001 .

[18]  Steven G. Schroeder,et al.  Physical and Genetic Structure of the Maize Genome Reflects Its Complex Evolutionary History , 2007, PLoS genetics.

[19]  Liang Gong,et al.  Detecting tomatoes in greenhouse scenes by combining AdaBoost classifier and colour analysis , 2016 .

[20]  Lato Pezo,et al.  Modelling of corn kernel pre-treatment, drying and processing for ethanol production using artificial neural networks , 2021 .

[21]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[22]  Min Huang,et al.  Maize seed classification using hyperspectral image coupled with multi-linear discriminant analysis , 2019 .

[23]  Jiangbo Li,et al.  Determination of starch content in single kernel using near-infrared hyperspectral images from two sides of corn seeds , 2020 .

[24]  Jianbing Yan,et al.  Genomic, transcriptomic and phenomic variation reveals the complex adaptation of modern maize breeding , 2014, bioRxiv.

[25]  Mahmoud Omid,et al.  Classification of peeled pistachio kernels using computer vision and color features , 2017 .

[26]  Jianfeng Cheng,et al.  A Novel Auto-Sorting System for Chinese Cabbage Seeds , 2017, Sensors.

[27]  I. Tokatlidis Crop adaptation to density to optimise grain yield: breeding implications , 2017, Euphytica.

[28]  Davide Ballabio,et al.  Multivariate comparison of classification performance measures , 2017 .

[29]  Zhijun Zhao,et al.  Estimating the Contribution of New Seed Cultivars to Increases in Crop Yields: A Case Study for Corn , 2017 .

[30]  Xiangjun Zou,et al.  A method of green litchi recognition in natural environment based on improved LDA classifier , 2017, Comput. Electron. Agric..

[31]  Jeroen C.J. Groot,et al.  Creating adaptive farm typologies using Naive Bayesian classification , 2017 .

[32]  Yaoming Li,et al.  Real-time grain impurity sensing for rice combine harvesters using image processing and decision-tree algorithm , 2020, Comput. Electron. Agric..

[33]  Jerry Lopez,et al.  Gaits Classification of Normal vs. Patients by Wireless Gait Sensor and Support Vector Machine (SVM) Classifier , 2017, Int. J. Softw. Innov..

[34]  Min Huang,et al.  Review of seed quality and safety tests using optical sensing technologies , 2015 .