An open-source tool for negation detection: a maximum-margin approach

This paper presents an open-source toolkit for negation detection. It identifies negation cues and their corresponding scope in either raw or parsed text using maximummargin classification. The system design draws on best practice from the existing literature on negation detection, aiming for a simple and portable system that still achieves competitive performance. Pretrained models and experimental results are provided for English.

[1]  Joakim Nivre,et al.  Universal Stanford dependencies: A cross-linguistic typology , 2014, LREC.

[2]  Erik Velldal,et al.  Predicting speculation: a simple disambiguation approach to hedge detection in biomedical literature , 2011, J. Biomed. Semant..

[3]  Erik Velldal,et al.  UiO 2: Sequence-labeling Negation Using Dependency Features , 2012, *SEMEVAL.

[4]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[5]  Bonnie L. Webber,et al.  Neural Networks For Negation Scope Detection , 2016, ACL.

[6]  Roser Morante,et al.  A Metalearning Approach to Processing the Scope of Negation , 2009, CoNLL.

[7]  Roser Morante,et al.  *SEM 2012 Shared Task: Resolving the Scope and Focus of Negation , 2012, *SEMEVAL.

[8]  Eugene Charniak,et al.  Coarse-to-Fine n-Best Parsing and MaxEnt Discriminative Reranking , 2005, ACL.

[9]  János Csirik,et al.  The CoNLL-2010 Shared Task: Learning to Detect Hedges and their Scope in Natural Language Text , 2010, CoNLL Shared Task.

[10]  Stephan Oepen,et al.  Speculation and Negation: Rules, Rankers, and the Role of Syntax , 2012, CL.

[11]  Emily M. Bender,et al.  Simple Negation Scope Resolution through Deep Parsing: A Semantic Solution to a Semantic Problem , 2014, ACL.

[12]  Mihai Surdeanu,et al.  The Stanford CoreNLP Natural Language Processing Toolkit , 2014, ACL.

[13]  Stephan Oepen,et al.  UiO1: Constituent-Based Discriminative Ranking for Negation Resolution , 2012, *SEMEVAL.

[14]  James Paul White UWashington: Negation Resolution using Machine Learning Methods , 2012, *SEM@NAACL-HLT.

[15]  Sven Behnke,et al.  PyStruct: learning structured prediction in python , 2014, J. Mach. Learn. Res..

[16]  Sabine Buchholz,et al.  CoNLL-X Shared Task on Multilingual Dependency Parsing , 2006, CoNLL.

[17]  János Csirik,et al.  The BioScope corpus: biomedical texts annotated for uncertainty, negation and their scopes , 2008, BMC Bioinformatics.