Optimization of spectral functions of Dirichlet-Laplacian eigenvalues

We consider the shape optimization of spectral functions of Dirichlet-Laplacian eigenvalues over the set of star-shaped, symmetric, bounded planar regions with smooth boundary. The regions are represented using Fourier-cosine coefficients and the optimization problem is solved numerically using a quasi-Newton method. The method is applied to maximizing two particular nonsmooth spectral functions: the ratio of the nth to first eigenvalues and the ratio of the nth eigenvalue gap to first eigenvalue, both of which are generalizations of the Payne-Polya-Weinberger ratio. The optimal values and attaining regions for n=<13 are presented and interpreted as a study of the range of the Dirichlet-Laplacian eigenvalues. For both spectral functions and each n, the optimal attaining region has multiplicity two nth eigenvalue.

[1]  R. Kohn,et al.  Optimization of scattering resonances , 2008 .

[2]  R. Benguria,et al.  Isoperimetric bounds for higher eigenvalue ratios for the n-dimensional fixed membrane problem , 1993, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[3]  V. G. Sigillito,et al.  Eigenvalues of the Laplacian in Two Dimensions , 1984 .

[4]  Fadil Santosa,et al.  Maximization of the quality factor of an optical resonator , 2008 .

[5]  C. Moler,et al.  APPROXIMATIONS AND BOUNDS FOR EIGENVALUES OF ELLIPTIC OPERATORS , 1967 .

[6]  Pablo A. Parrilo,et al.  Bandgap optimization of two-dimensional photonic crystals using semidefinite programming and subspace methods , 2009, J. Comput. Phys..

[7]  Mark A. Pinsky,et al.  The Eigenvalues of an Equilateral Triangle , 1980 .

[8]  Timo Betcke,et al.  Stability and convergence of the method of fundamental solutions for Helmholtz problems on analytic domains , 2007, J. Comput. Phys..

[9]  Maximally resonant potentials subject to p-norm constraints , 1987 .

[10]  A. Bratus,et al.  Extremum problems for Laplacian eigenvalues with free boundary , 1992 .

[11]  Antoine Henrot,et al.  Extremum Problems for Eigenvalues of Elliptic Operators , 2006 .

[12]  S. Cox EXTREMAL EIGENVALUE PROBLEMS FOR STARLIKE PLANAR DOMAINS , 1995 .

[13]  R. Benguria,et al.  Isoperimetric Inequalities for Eigenvalues of the Laplacian , 2007 .

[14]  J. Pöschel,et al.  Inverse spectral theory , 1986 .

[15]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[16]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[17]  M. Kac Can One Hear the Shape of a Drum , 1966 .

[18]  G. Pólya,et al.  ON THE RATIO OF CONSECUTIVE EIGENVALUES , 1956 .

[19]  E. Harrell,et al.  Differential inequalities for Riesz means and Weyl-type bounds for eigenvalues , 2007, 0705.3673.

[20]  S. Osher,et al.  Level Set Methods for Optimization Problems Involving Geometry and Constraints I. Frequencies of a T , 2001 .

[21]  Fadil Santosa,et al.  Optimal Localization of Eigenfunctions in an Inhomogeneous Medium , 2004, SIAM J. Appl. Math..

[22]  C. B. Moler,et al.  Bounds for Eigenvalues and Eigenvectors of Symmetric Operators , 1968 .

[23]  Adrian S. Lewis,et al.  Convex Analysis And Nonlinear Optimization , 2000 .

[24]  Jack K. Hale,et al.  Perturbation of the Boundary in Boundary-Value Problems of Partial Differential Equations , 2005 .

[25]  Qing-Ming Cheng,et al.  Bounds on eigenvalues of Dirichlet Laplacian , 2006 .

[26]  Alex H. Barnett,et al.  Perturbative Analysis of the Method of Particular Solutions for Improved Inclusion of High-Lying Dirichlet Eigenvalues , 2009, SIAM J. Numer. Anal..

[27]  Wolfgang Arendt,et al.  Weyl's Law: Spectral Properties of the Laplacian in Mathematics and Physics , 2009 .

[28]  T. Harayama,et al.  ‘Can one hear the shape of a drum?’: revisited , 2005 .

[29]  J. Keller,et al.  Range of the first two eigenvalues of the laplacian , 1994, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[30]  E. Ng,et al.  Adjoint methods for electromagnetic shape optimization of the low-loss cavity for the International Linear Collider , 2005 .

[31]  Franz Rellich,et al.  Perturbation Theory of Eigenvalue Problems , 1969 .

[32]  Lloyd N. Trefethen,et al.  Computations of Eigenvalue Avoidance in Planar Domains , 2004 .

[33]  Lloyd N. Trefethen,et al.  Reviving the Method of Particular Solutions , 2005, SIAM Rev..

[34]  Brian J. McCartin,et al.  Eigenstructure of the Equilateral Triangle, Part I: The Dirichlet Problem , 2003, SIAM Rev..

[35]  R. Benguria,et al.  A sharp bound for the ratio of the first two eigenvalues of Dirichlet Laplacians and extensions , 1992 .

[36]  G. Golub,et al.  Inverse Eigenvalue Problems: Theory, Algorithms, and Applications , 2005 .

[37]  Range of the first three eigenvalues of the planar Dirichlet Laplacian , 2002, math/0203231.

[38]  Lie-Quan Lee,et al.  Shape determination for deformed electromagnetic cavities , 2008, J. Comput. Phys..

[39]  Edouard Oudet,et al.  Numerical minimization of eigenmodes of a membrane with respect to the domain , 2004 .

[40]  Wolfgang Arendt,et al.  Mathematical Analysis of Evolution, Information, and Complexity , 2009 .

[41]  E. Harrell,et al.  Potentials producing maximally sharp resonances , 1986 .

[42]  Lloyd N. Trefethen,et al.  Computed eigenmodes of planar regions , 2005 .

[43]  Mohamed A. Khabou,et al.  Shape recognition using eigenvalues of the Dirichlet Laplacian , 2007, Pattern Recognit..