A time semi-implicit scheme for the energy-balanced coupling of a shocked fluid flow with a deformable structure
暂无分享,去创建一个
Alexandre Ern | Christian Tenaud | Laurent Monasse | Christian Mariotti | Maria Adela Puscas | Virginie Daru
[1] E. Hairer,et al. Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .
[2] J. Falcovitz,et al. A Two-Dimensional Conservation Laws Scheme for Compressible Flows with Moving Boundaries , 1997 .
[3] T. Poinsot. Boundary conditions for direct simulations of compressible viscous flows , 1992 .
[4] Farrokh Najmabadi,et al. An embedded boundary method for viscous, conducting compressible flow , 2004, J. Comput. Phys..
[5] Charbel Farhat,et al. A higher-order generalized ghost fluid method for the poor for the three-dimensional two-phase flow computation of underwater implosions , 2008, J. Comput. Phys..
[6] Ronald Fedkiw,et al. Numerically stable fluid-structure interactions between compressible flow and solid structures , 2011, J. Comput. Phys..
[7] Laurent Monasse,et al. A Three-Dimensional Conservative Coupling Method Between an Inviscid Compressible Flow and a Moving Rigid Solid , 2015, SIAM J. Sci. Comput..
[8] C. Peskin. Numerical analysis of blood flow in the heart , 1977 .
[9] F. Casadei,et al. Arbitrary Lagrangian–Eulerian multicomponent compressible flow with fluid–structure interaction , 1997 .
[10] E. Oñate,et al. A monolithic Lagrangian approach for fluid–structure interaction problems , 2010 .
[11] P. Tallec,et al. Fluid structure interaction with large structural displacements , 2001 .
[12] P. Colella,et al. A conservative three-dimensional Eulerian method for coupled solid-fluid shock capturing , 2002 .
[13] Ronald Fedkiw,et al. Fully conservative leak-proof treatment of thin solid structures immersed in compressible fluids , 2013, J. Comput. Phys..
[14] Richard Saurel,et al. Solid-fluid diffuse interface model in cases of extreme deformations , 2009, J. Comput. Phys..
[15] John B. Bell,et al. Cartesian grid method for unsteady compressible flow in irregular regions , 1995 .
[16] Nikolaus A. Adams,et al. A conservative interface method for compressible flows , 2006, J. Comput. Phys..
[17] Kevin G. Wang,et al. Algorithms for interface treatment and load computation in embedded boundary methods for fluid and fluid–structure interaction problems , 2011 .
[18] Manuel Rotenberg,et al. Fundamental methods in hydrodynamics , 1964 .
[19] Michele Napolitano,et al. AN IMMERSED-BOUNDARY METHOD FOR COMPRESSIBLE VISCOUS FLOWS , 2006 .
[20] Phillip Colella,et al. A Cartesian grid embedded boundary method for hyperbolic conservation laws , 2006 .
[21] C. Mariotti,et al. An energy-preserving Discrete Element Method for elastodynamics , 2009, 0907.2202.
[22] R. Fedkiw,et al. Coupling an Eulerian fluid calculation to a Lagrangian solid calculation with the ghost fluid method , 2002 .
[23] Rémi Abgrall,et al. Ghost-Fluids for the Poor: A Single Fluid Algorithm for Multifluids , 2001 .
[24] Eugenio Oñate,et al. Unified Lagrangian formulation for elastic solids and incompressible fluids: Application to fluid–structure interaction problems via the PFEM , 2008 .
[25] J. Halleux,et al. An arbitrary lagrangian-eulerian finite element method for transient dynamic fluid-structure interactions , 1982 .
[26] Christian Tenaud,et al. High order one-step monotonicity-preserving schemes for unsteady compressible flow calculations , 2004 .
[27] Christian Tenaud,et al. A conservative coupling algorithm between a compressible flow and a rigid body using an Embedded Boundary method , 2010, J. Comput. Phys..