Improved Routing and Sorting on Multibutterflies

Abstract. This paper shows that an N -node AKS network (as described by Paterson) can be embedded in a ( 3N / 2 ) -node twinbutterfly network (i.e., a multibutterfly constructed by superimposing two butterfly networks) with load 1, congestion 1, and dilation 2. The result has several implications, including the first deterministic algorithms for sorting and finding the median of n log n items on an n -input multibutterfly in O ( log n ) time, a work-efficient deterministic algorithm for finding the median of n log2 n log log n items on an n -input multibutterfly in O (log n log log n ) time, and a three-dimensional VLSI layout for the n -input AKS network with volume O(n3/2) . While these algorithms are not practical, they provide further evidence of the robustness of multibutterfly networks. We also present a separate, and more practical, deterministic algorithm for routing h -relations on an n -input multibutterfly in O(h + log n) time. Previously, only algorithms for solving h one-to-one routing problems were known. Finally, we show that a twinbutterfly, whose individual splitters do not exhibit expansion, can emulate a bounded-degree multibutterfly with (α,β) -expansion, for any α⋅β < 1/4 .

[1]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[2]  Mikhail J. Atallah On Multidimensional Arrays of Processors , 1988, IEEE Trans. Computers.

[3]  Franco P. Preparata,et al.  The VLSI Optimality of the AKS Sorting Network , 1985, Inf. Process. Lett..

[4]  Friedhelm Meyer auf der Heide,et al.  Efficient Simulations Among Several Models of Parallel Computers , 1984, SIAM journal on computing (Print).

[5]  Kenneth E. Batcher,et al.  Sorting networks and their applications , 1968, AFIPS Spring Joint Computing Conference.

[6]  Olaf Bonorden,et al.  The Paderborn university BSP (PUB) library-design, implementation and performance , 1999, Proceedings 13th International Parallel Processing Symposium and 10th Symposium on Parallel and Distributed Processing. IPPS/SPDP 1999.

[7]  Donald E. Knuth,et al.  The art of computer programming: sorting and searching (volume 3) , 1973 .

[8]  Leslie G. Valiant,et al.  A bridging model for parallel computation , 1990, CACM.

[9]  Frank Thomson Leighton,et al.  Tight Bounds on the Complexity of Parallel Sorting , 1984, IEEE Transactions on Computers.

[10]  M. Pinsker,et al.  On the complexity of a concentrator , 1973 .

[11]  Eric J. Schwabe Constant-Slowdown Simulations of Normal Hypercube Algorithms on the Butterfly Network , 1993, Inf. Process. Lett..

[12]  William F. McColl BSP Programming , 1994, Specification of Parallel Algorithms.

[13]  Bruce M. Maggs,et al.  Randomized Routing and Sorting on Fixed-Connection Networks , 1994, J. Algorithms.

[14]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[15]  Andrea Pietracaprina Deterministic routing of h-relations on the multibutterfly , 1998, Proceedings of the First Merged International Parallel Processing Symposium and Symposium on Parallel and Distributed Processing.

[16]  Bruce M. Maggs,et al.  Empirical evaluation of randomly-wire multistage networks , 1990, Proceedings., 1990 IEEE International Conference on Computer Design: VLSI in Computers and Processors.

[17]  Bruce M. Maggs,et al.  Fast Algorithms for Routing Around Faults in Multibutterflies and Randomly-Wired Splitter Networks , 1992, IEEE Trans. Computers.

[18]  Guy E. Blelloch,et al.  Specification of Parallel Algorithms , 1994 .

[19]  Eric A. Brewer,et al.  Scalable expanders: exploiting hierarchical random wiring , 1994, STOC '94.

[20]  Kevin J. Rappoport,et al.  Bandwidth-based lower bounds on slowdown for efficient emulations of fixed-connection networks , 1994, SPAA '94.

[21]  Friedhelm Meyer auf der Heide,et al.  Optimal Tradeoffs Between Size and Slowdown for Universal Parallel Networks , 1997, Theory of Computing Systems.

[22]  Frank Thomson Leighton Introduction to parallel algorithms and architectures: arrays , 1992 .

[23]  Nabil Kahale,et al.  Eigenvalues and expansion of regular graphs , 1995, JACM.

[24]  Leslie G. Valiant,et al.  A logarithmic time sort for linear size networks , 1982, STOC.

[25]  Bruce M. Maggs,et al.  On-line algorithms for path selection in a nonblocking network , 1990, STOC '90.

[26]  Kevin J. Rappoport,et al.  On the slowdown of efficient simulations of multibutterflies on butterflies and butterfly-derived networks , 1996, SPAA '96.

[27]  Friedhelm Meyer auf der Heide,et al.  Time-Optimal Simulations of Networks by Universal Parallel Computers , 1989, STACS.

[28]  Eli Upfal,et al.  An O(logN) deterministic packet routing scheme , 1989, STOC '89.

[29]  Norihisa Suzuki,et al.  Fault-tolerant Design for Multistage Routing Networks , 1992 .

[30]  C. Greg Plaxton On the network complexity of selection , 1989, 30th Annual Symposium on Foundations of Computer Science.

[31]  Friedhelm Meyer auf der Heide,et al.  Optimal trade-offs between size and slowdown for universal parallel networks , 1995, SPAA '95.

[32]  Bruce M. Maggs,et al.  A Parallel Algorithm for Reconfiguring a Multibutterfly Network with Faulty Switches , 1994, IEEE Trans. Computers.

[33]  E. Szemerédi,et al.  Sorting inc logn parallel steps , 1983 .

[34]  C. Greg Plaxton,et al.  Deterministic sorting in nearly logarithmic time on the hypercube and related computers , 1990, STOC '90.

[35]  Arnold L. Rosenberg,et al.  Work-preserving emulations of fixed-connection networks , 1989, STOC '89.

[36]  Nicholas Pippenger Self-Routing Superconcentrators , 1996, J. Comput. Syst. Sci..

[37]  Bruce M. Maggs,et al.  Real-Time Emulations of Bounded-Degree Networks , 1998, Inf. Process. Lett..

[38]  Bruce M. Maggs,et al.  Sorting-based selection algorithms for hypercubic networks , 1993, [1993] Proceedings Seventh International Parallel Processing Symposium.

[39]  Franco P. Preparata,et al.  A Minimum Area VLSI Network for O(log n) Time Sorting , 1985, IEEE Transactions on Computers.

[40]  André DeHon,et al.  Fault Tolerant Design for Multistage Routing Networks , 1990 .

[41]  Friedhelm Meyer auf der Heide,et al.  Efficiency of universal parallel computers , 1983, Acta Informatica.

[42]  Donald E. Knuth,et al.  The Art of Computer Programming: Volume 3: Sorting and Searching , 1998 .

[43]  Bruce M. Maggs,et al.  Sorting-Based Selection Algorithms for Hypercubic Networks , 2000, Algorithmica.

[44]  János Komlós,et al.  Sorting in c log n parallel sets , 1983, Comb..

[45]  Manuel Blum,et al.  Time Bounds for Selection , 1973, J. Comput. Syst. Sci..

[46]  C. Greg Plaxton Tight bounds for a distributed selection game with applications to fixed-connection machines , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[47]  Torsten Suel,et al.  Towards efficiency and portability: programming with the BSP model , 1996, SPAA '96.

[48]  Rainer Feldmann,et al.  The Cube-Connected Cycles Network Is a Subgraph of the Butterfly Network , 1992, Parallel Process. Lett..

[49]  Arnold L. Rosenberg,et al.  Optimal emulations by butterfly-like networks , 1996, JACM.

[50]  F. Leighton,et al.  Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes , 1991 .

[51]  Friedhelm Meyer auf der Heide Efficient Simulations Among Several Models of Parallel Computers , 1986, SIAM J. Comput..

[52]  Eli Upfal An ) deterministic packet routing scheme , 1989, STOC 1989.

[53]  Eli Upfal,et al.  An O(log N) deterministic packet-routing scheme , 1992, JACM.

[54]  Arnold L. Rosenberg,et al.  Work-preserving emulations of fixed-connection networks , 1997, JACM.