The future of Stardust science

Recent observations indicate that >99% of the small bodies in the Solar System reside in its outer reaches --- in the Kuiper Belt and Oort Cloud. Kuiper Belt bodies are probably the best preserved representatives of the icy planetesimals that dominated the bulk of the solid mass in the early Solar System. They likely contain preserved materials inherited from the protosolar cloud, held in cryogenic storage since the formation of the Solar System. Despite their importance, they are relatively underrepresented in our extraterrestrial sample collections by many orders of magnitude ($\sim$10$^{13}$ by mass) as compared with the asteroids, represented by meteorites, which are composed of materials that have generally been strongly altered by thermal and aqueous processes. We have only begun to scratch the surface in understanding Kuiper Belt objects, but it is already clear that the very limited samples of them that we have in our laboratories hold the promise of dramatically expanding our understanding of the formation of the Solar System. Stardust returned the first samples from a known small solar-system body, the Jupiter-family comet 81P/Wild 2, and, in a separate collector, the first solid samples from the local interstellar medium. The first decade of Stardust research resulted in more than 142 peer-reviewed publications, including 15 papers in Science. Analyses of these amazing samples continue to yield unexpected discoveries and to raise new questions about the history of the early Solar System. We identify 9 high-priority scientific objectives for future Stardust analyses that address important unsolved problems in planetary science.

[1]  Saša Bajt,et al.  Evidence for interstellar origin of seven dust particles collected by the Stardust spacecraft , 2014, Science.

[2]  M. Burchell,et al.  Identification of mineral impactors in hypervelocity impact craters in aluminum by Raman spectroscopy of residues , 2008 .

[3]  Paolo Farinella,et al.  Collisional Evolution of Edgeworth–Kuiper Belt Objects , 1997 .

[4]  P. Farinella,et al.  Short-Period Comets: Primordial Bodies or Collisional Fragments? , 1996, Science.

[5]  David P. Anderson,et al.  Stardust Interstellar Preliminary Examination VIII: Identification of crystalline material in two interstellar candidates , 2014 .

[6]  M. Chi,et al.  Comparison of Comet 81P/Wild 2 Dust with Interplanetary Dust from Comets , 2008, Science.

[7]  J. Elsila,et al.  Cometary Glycine Detected in Stardust-Returned Samples , 2010 .

[8]  Dante S. Lauretta,et al.  Evidence for aqueous activity on comet 81P/Wild 2 from sulfide mineral assemblages in Stardust samples and CI chondrites , 2011 .

[9]  A. Westphal,et al.  Carbon investigation of two Stardust particles: A TEM, NanoSIMS, and XANES study , 2008 .

[10]  D. Brownlee,et al.  Cometary Particles: Thin Sectioning and Electron Beam Analysis , 1986, Science.

[11]  H. C. Connolly,et al.  Compositional evolution of the protoplanetary disk: Oxygen isotopes of type-II chondrules from CR2 chondrites , 2010 .

[12]  Andrew Steele,et al.  Organics Captured from Comet 81P/Wild 2 by the Stardust Spacecraft , 2006, Science.

[13]  M. Burchell,et al.  Microstructure modifications of silicates induced by the collection in aerogel: Experimental approach and comparison with Stardust results , 2012 .

[14]  M. Burchell,et al.  Extent of thermal ablation suffered by model organic microparticles during aerogel capture at hypervelocities , 2009 .

[15]  M. Bizzarro,et al.  Origin of Nucleosynthetic Isotope Heterogeneity in the Solar Protoplanetary Disk , 2009, Science.

[16]  Robert Jedicke,et al.  The fossilized size distribution of the main asteroid belt , 2003 .

[17]  G. Cody,et al.  Correlated microanalysis of cometary organic grains returned by Stardust , 2011 .

[18]  Ian D. Hutcheon,et al.  Isotopic Compositions of Cometary Matter Returned by Stardust , 2006, Science.

[19]  Saša Bajt,et al.  Final reports of the Stardust Interstellar Preliminary Examination , 2014 .

[20]  David P. Anderson,et al.  Stardust Interstellar Preliminary Examination V: XRF analyses of interstellar dust candidates at ESRF ID13 , 2014 .

[21]  M. Chi,et al.  The origin of refractory minerals in comet 81P/Wild 2 , 2008 .

[22]  J. Elsila,et al.  Cometary glycine detected in samples returned by Stardust , 2009 .

[23]  H. Ishii,et al.  A refractory inclusion returned by Stardust from comet 81P/Wild 2 , 2008 .

[24]  D. Brownlee,et al.  Oxygen isotopes in crystalline silicates of comet Wild 2: A comparison of oxygen isotope systematics between Wild 2 particles and chondritic materials , 2012 .

[25]  Ian Wright,et al.  Impact Features on Stardust: Implications for Comet 81P/Wild 2 Dust , 2006, Science.

[26]  D. Brownlee,et al.  Diverse forms of primordial organic matter identified in interplanetary dust particles , 2012 .

[27]  J. Bridges,et al.  Extended X-ray Absorption Fine Structure (EXAFS) in Stardust tracks: Constraining the origin of ferric iron-bearing minerals , 2012 .

[28]  David P. Anderson,et al.  Stardust Interstellar Preliminary Examination VII: Synchrotron X‐ray fluorescence analysis of six Stardust interstellar candidates measured with the Advanced Photon Source 2‐ID‐D microprobe , 2014 .

[29]  Jean-Noël Rouzaud,et al.  Connection between micrometeorites and Wild 2 particles: From Antarctic snow to cometary ices , 2009 .

[30]  G. Flynn,et al.  Chemical composition and heterogeneity of Wild 2 cometary particles determined by synchrotron X‐ray fluorescence , 2008 .

[31]  M. Zolensky,et al.  Late formation of a comet Wild 2 crystalline silicate particle, Pyxie, inferred from Al–Mg chronology of plagioclase , 2015 .

[32]  D. Frank,et al.  Olivine in terminal particles of Stardust aerogel tracks and analogous grains in chondrite matrix , 2014 .

[33]  Hajime Yano,et al.  Mineralogy and Petrology of Comet 81P/Wild 2 Nucleus Samples , 2006, Science.

[34]  J. Greenberg Making a comet nucleus , 1998 .

[35]  H. Craig,et al.  The composition of the stone meteorites and the origin of the meteorites , 1953 .

[36]  M. Burchell,et al.  THE ABUNDANCE OF PRESOLAR GRAINS IN COMET 81P/WILD 2 , 2013 .

[37]  A. Tsuchiyama,et al.  Chondrulelike Objects in Short-Period Comet 81P/Wild 2 , 2008, Science.

[38]  A. Westphal,et al.  MIXING FRACTION OF INNER SOLAR SYSTEM MATERIAL IN COMET 81P/WILD2 , 2009 .

[39]  A. Tsuchiyama,et al.  Three‐dimensional structures and elemental distributions of Stardust impact tracks using synchrotron microtomography and X‐ray fluorescence analysis , 2009 .

[40]  David P. Anderson,et al.  Stardust Interstellar Preliminary Examination I: Identification of tracks in aerogel , 2014 .

[41]  K. Fujino,et al.  Mineralogical characterization of a unique material having heavy oxygen isotope anomaly in matrix of the primitive carbonaceous chondrite Acfer 094 , 2008 .

[42]  J. Bradley,et al.  Comment on “The shape and composition of interstellar silicate grains” , 2007, 0804.2271.

[43]  M. Burchell,et al.  Stardust impact analogs: Resolving pre‐ and postimpact mineralogy in Stardust Al foils , 2012 .

[44]  D. Brownlee,et al.  Surface of Young Jupiter Family Comet 81P/Wild 2: View from the Stardust Spacecraft , 2004, Science.

[45]  J. Blum,et al.  Comet formation in collapsing pebble clouds. What cometary bulk density implies for the cloud mass and dust-to-ice ratio , 2016, 1601.05726.

[46]  G. Cody,et al.  Organic thermometry for chondritic parent bodies , 2008 .

[47]  D. Brownlee,et al.  PRE-ACCRETIONAL SORTING OF GRAINS IN THE OUTER SOLAR NEBULA , 2013 .

[48]  M. Burchell,et al.  Aerogel tracks made by impacts of glycine: Implications for formation of bulbous tracks in aerogel and the Stardust mission , 2012 .

[49]  J. Bridges,et al.  Magnetite in Comet Wild 2: Evidence for parent body aqueous alteration , 2017 .

[50]  G. MacPherson Calcium-Aluminum-rich Inclusions in Chondritic Meteorites , 2003 .

[51]  M. Burchell,et al.  The survivability of phyllosilicates and carbonates impacting Stardust Al foils: Facilitating the search for cometary water , 2015 .

[52]  A. Tielens,et al.  Erratum: “The Absence of Crystalline Silicates in the Diffuse Interstellar Medium” (ApJ, 609, 826 [2004]) , 2005 .

[53]  M. Zolensky,et al.  Collection and curation of interplanetary dust particles recovered from the stratosphere by NASA , 1994 .

[54]  M. G. Burke,et al.  Large volume serial section tomography by Xe Plasma FIB dual beam microscopy. , 2016, Ultramicroscopy.

[55]  Michael E. Zolensky,et al.  Stardust: Comet and interstellar dust sample return mission , 2003 .

[56]  J. Borg,et al.  Comet 81P/Wild 2: The size distribution of finer (sub‐10 μm) dust collected by the Stardust spacecraft , 2010 .

[57]  R. C. Wiens,et al.  The Oxygen Isotopic Composition of the Sun Inferred from Captured Solar Wind , 2011, Science.

[58]  N. Biver,et al.  The volatile composition of 81P/Wild 2 from ground-based high-resolution infrared spectroscopy , 2014 .

[59]  M. Burchell,et al.  Bulbous tracks arising from hypervelocity capture in aerogel , 2008 .

[60]  G. Flynn,et al.  Organic matter from comet 81P/Wild 2, IDPs, and carbonaceous meteorites; similarities and differences , 2009 .

[61]  A. Westphal,et al.  Oxygen isotopic composition of coarse- and fine-grained material from comet 81P/Wild 2 , 2015, 1506.04783.

[62]  Simon F. Green,et al.  Characteristics of cometary dust tracks in Stardust aerogel and laboratory calibrations , 2008 .

[63]  A. Westphal,et al.  Nebular mixing constrained by the Stardust samples , 2009 .

[64]  P. Armitage,et al.  PARTICLE TRANSPORT IN EVOLVING PROTOPLANETARY DISKS: IMPLICATIONS FOR RESULTS FROM STARDUST , 2010, 1007.1989.

[65]  R. Ogliore,et al.  Heterogeneous distribution of 26Al at the birth of the solar system: Evidence from refractory grains and inclusions , 2012 .

[66]  S. Debei,et al.  Two independent and primitive envelopes of the bilobate nucleus of comet 67P , 2015, Nature.

[67]  Saša Bajt,et al.  Assessment and control of organic and other contaminants associated with the Stardust sample return from comet 81P/Wild 2 , 2010 .

[68]  M. Saniga,et al.  Interplanetary dust particles and solar wind , 1993 .

[69]  P. Pianetta,et al.  Recovering the elemental composition of comet Wild 2 dust in five Stardust impact tracks and terminal particles in aerogel , 2007 .

[70]  David P. Anderson,et al.  Stardust Interstellar Preliminary Examination X: Impact speeds and directions of interstellar grains on the Stardust dust collector , 2014 .

[71]  H. Leroux,et al.  Pyroxenes microstructure in comet 81P/Wild 2 terminal Stardust particles , 2009 .

[72]  T. Stephan,et al.  Cometary dust in Antarctic ice and snow: Past and present chondritic porous micrometeorites preserved on the Earth's surface , 2015 .

[73]  J. Borg,et al.  Dust from comet Wild 2: Interpreting particle size, shape, structure, and composition from impact features on the Stardust aluminum foils , 2008 .

[74]  M. Burchell,et al.  Interpretation of Wild 2 dust fine structure: Comparison of Stardust aluminum foil craters to the three‐dimensional shape of experimental impacts by artificial aggregate particles and meteorite powders , 2009 .

[75]  Michael E. Zolensky,et al.  Curation, spacecraft recovery, and preliminary examination for the Stardust mission: A perspective from the curatorial facility , 2008 .

[76]  M. Burchell,et al.  Experimental impact features in Stardust aerogel: How track morphology reflects particle structure, composition, and density , 2012 .

[77]  A. Westphal,et al.  Comprehensive examination of large mineral and rock fragments in Stardust tracks: Mineralogy, analogous extraterrestrial materials, and source regions , 2012 .

[78]  M. Burchell,et al.  In situ analysis of residues resulting from laboratory impacts into aluminum 1100 foil: Implications for Stardust crater analyses , 2009 .

[79]  K. A. Dyl,et al.  A short timescale for changing oxygen fugacity in the solar nebula revealed by high-resolution 26Al–26Mg dating of CAI rims , 2005 .

[80]  R. Miles,et al.  On liquid phases in cometary nuclei , 2011 .

[81]  A. Davis,et al.  A link between oxygen, calcium and titanium isotopes in 26 Al-poor hibonite-rich CAIs from Murchison and implications for the heterogeneity of dust reservoirs in the solar nebula , 2016 .

[82]  D. Brownlee,et al.  An infrared spectral match between GEMS and interstellar grains. , 1999, Science.

[83]  C. Hammer,et al.  Collection and curation of IDPs from the Greenland and Antarctic ice sheets , 2008 .

[84]  M. Burchell,et al.  Experimental investigation of impacts by solar cell secondary ejecta on silica aerogel and aluminum foil: Implications for the Stardust Interstellar Dust Collector , 2012 .

[85]  Harold F. Levison,et al.  COMETARY ORIGIN OF THE ZODIACAL CLOUD AND CARBONACEOUS MICROMETEORITES. IMPLICATIONS FOR HOT DEBRIS DISKS , 2009, 0909.4322.

[86]  M. Zolensky,et al.  Petrographic, chemical and spectroscopic evidence for thermal metamorphism in carbonaceous chondrites I: CI and CM chondrites , 2014 .

[87]  K. McKeegan Oxygen Isotopes in Refractory Stratospheric Dust Particles: Proof of Extraterrestrial Origin , 1987, Science.

[88]  M. Bourot‐Denise,et al.  A collection of diverse micrometeorites recovered from 100 tonnes of Antarctic blue ice , 1991, Nature.

[89]  E. Zubko,et al.  Evaluating the carbon depletion found by the Stardust mission in Comet 81P/Wild 2 , 2012 .

[90]  J F Kerridge,et al.  Magnetite in CI Carbonaceous Meteorites: Origin by Aqueous Activity on a Planetesimal Surface , 1979, Science.

[91]  D. Brownlee,et al.  Overview of the rocky component of Wild 2 comet samples: Insight into the early solar system, relationship with meteoritic materials and the differences between comets and asteroids , 2012 .

[92]  V. A. Solé,et al.  Stardust Interstellar Preliminary Examination IX: High‐speed interstellar dust analog capture in Stardust flight‐spare aerogel , 2014 .

[93]  M. Burchell,et al.  Laboratory simulation of impacts on aluminum foils of the Stardust spacecraft: Calibration of dust particle size from comet Wild‐2 , 2006 .

[94]  David P. Anderson,et al.  Stardust Interstellar Preliminary Examination XI: Identification and elemental analysis of impact craters on Al foils from the Stardust Interstellar Dust Collector , 2014 .

[95]  C. Floss,et al.  Stardust in Stardust—The C, N, and O isotopic compositions of Wild 2 cometary matter in Al foil impacts , 2008 .

[96]  S. Tachibana,et al.  High precision SIMS oxygen three isotope study of chondrules in LL3 chondrites: Role of ambient gas during chondrule formation , 2010 .

[97]  T. Tyliszczak,et al.  Iron valence state of fine-grained material from the Jupiter family comet 81P/Wild 2 – A coordinated TEM/STEM EDS/STXM study , 2013 .

[98]  M. Bizzarro,et al.  The Absolute Chronology and Thermal Processing of Solids in the Solar Protoplanetary Disk , 2012, Science.

[99]  M. Burchell,et al.  Survival of refractory presolar grain analogs during Stardust‐like impact into Al foils: Implications for Wild 2 presolar grain abundances and study of the cometary fine fraction , 2015 .

[100]  Q. Yin,et al.  53Mn‐53Cr dating of aqueously formed carbonates in the CM2 lithology of the Sutter's Mill carbonaceous chondrite , 2014 .

[101]  G. Flynn,et al.  TOF‐SIMS analysis of crater residues from Wild 2 cometary particles on Stardust aluminum foil , 2008 .

[102]  F. Ciesla,et al.  Outward Transport of High-Temperature Materials Around the Midplane of the Solar Nebula , 2007, Science.

[103]  M. Burchell,et al.  Thermal alteration of hydrated minerals during hypervelocity capture to silica aerogel at the flyby speed of Stardust , 2007 .

[104]  F. Hörz Cratering and penetration experiments in aluminum and teflon: Implications for space‐exposed surfaces , 2012 .

[105]  Philip Muirhead,et al.  MEASURING THE ABUNDANCE OF SUB-KILOMETER-SIZED KUIPER BELT OBJECTS USING STELLAR OCCULTATIONS , 2012, 1210.8155.

[106]  M. Burchell,et al.  Identification by Raman spectroscopy of Mg-Fe content of olivine samples after impact at 6 km s -1 onto aluminium foil and aerogel: In the laboratory and in Wild-2 cometary samples , 2013 .

[107]  S. Bajt,et al.  Helium and Neon Abundances and Compositions in Cometary Matter , 2007, Science.

[108]  D. Brownlee,et al.  CHON as a component of dust from comet Halley , 1992, Nature.

[109]  A. Westphal,et al.  Kosmochloric Ca‐rich pyroxenes and FeO‐rich olivines (Kool grains) and associated phases in Stardust tracks and chondritic porous interplanetary dust particles: Possible precursors to FeO‐rich type II chondrules in ordinary chondrites , 2009 .

[110]  J. Nuth,et al.  Understanding the mechanisms of formation of nanophase compounds from Stardust: Combined experimental and observational approach , 2011 .

[111]  Andrew Steele,et al.  Organic compounds on comet 67P/Churyumov-Gerasimenko revealed by COSAC mass spectrometry , 2015, Science.

[112]  A. Davis,et al.  CHILI – the Chicago Instrument for Laser Ionization – a new tool for isotope measurements in cosmochemistry , 2016 .

[113]  M. Zolensky Reports Refractory Interplanetary Dust Particles , 1987, Science.

[114]  S. Bajt,et al.  THE ORIGIN OF THE 3.4 μm FEATURE IN WILD 2 COMETARY PARTICLES AND IN ULTRACARBONACEOUS INTERPLANETARY DUST PARTICLES , 2013, 1301.7470.

[115]  David P. Anderson,et al.  Stardust Interstellar Preliminary Examination II: Curating the interstellar dust collector, picokeystones, and sources of impact tracks , 2014 .

[116]  M. Burchell,et al.  Stardust interstellar dust calibration: Hydrocode modeling of impacts on Al‐1100 foil at velocities up to 300 km s−1 and validation with experimental data , 2012 .

[117]  M. Burchell,et al.  The origin of crystalline residues in Stardust Al foils: Surviving cometary dust or crystallized impact melts? , 2012 .

[118]  S. Sandford,et al.  Complex aromatic hydrocarbons in Stardust samples collected from comet 81P/Wild 2 , 2010 .

[119]  A. Westphal,et al.  Nanoscale infrared spectroscopy as a non-destructive probe of extraterrestrial samples , 2014, Nature Communications.

[120]  A. Krot,et al.  Fine‐grained, spinel‐rich inclusions from the reduced CV chondrites Efremovka and Leoville: I. Mineralogy, petrology, and bulk chemistry , 2004 .

[121]  David P. Anderson,et al.  Stardust Interstellar Preliminary Examination IV: Scanning transmission X‐ray microscopy analyses of impact features in the Stardust Interstellar Dust Collector , 2014 .

[122]  J. Bridges,et al.  Chondrule fragments from Comet Wild2: Evidence for high temperature processing in the outer Solar System , 2012 .

[123]  David P. Anderson,et al.  Stardust Interstellar Preliminary Examination VI: Quantitative elemental analysis by synchrotron X‐ray fluorescence nanoimaging of eight impact features in aerogel , 2014 .

[124]  Chris Jacobsen,et al.  The nature of molecular cloud material in interplanetary dust , 2004 .

[125]  G. Cody,et al.  Ultra-primitive interplanetary dust particles from the comet 26P/Grigg–Skjellerup dust stream collection , 2009 .

[126]  J. Bradley Chemically Anomalous, Preaccretionally Irradiated Grains in Interplanetary Dust from Comets , 1994, Science.

[127]  D. Lauretta,et al.  Oxidation of Minor Elements from an Iron–Nickel–Chromium–Cobalt–Phosphorus Alloy in 17.3% CO2–H2 Gas Mixtures at 700–1000 °C , 2009 .

[128]  L. Nittler,et al.  Isotopic anomalies in organic nanoglobules from Comet 81P/Wild 2: Comparison to Murchison nanoglobules and isotopic anomalies induced in terrestrial organics by electron irradiation , 2010 .

[129]  M. Zolensky,et al.  A primitive dark inclusion with radiation‐damaged silicates in the Ningqiang carbonaceous chondrite , 2003 .

[130]  A. Tielens,et al.  The Absence of Crystalline Silicates in the Diffuse Interstellar Medium , 2004, astro-ph/0403609.

[131]  G. Flynn,et al.  STXM search for carbonate in samples of Comet 81P/Wild 2 , 2009 .

[132]  A. Westphal,et al.  Characterization of preserved primitive fine-grained material from the Jupiter family comet 81P/Wild 2 – A new link between comets and CP-IDPs , 2014 .

[133]  M. Chi,et al.  Comparing Wild 2 particles to chondrites and IDPs , 2008 .

[134]  K. Keil,et al.  Aluminum-Magnesium and Oxygen Isotope Study of Relict Ca-Al-rich Inclusions in Chondrules , 2006 .

[135]  T. Tyliszczak,et al.  Constraints on the formation environment of two chondrule‐like igneous particles from comet 81P/Wild 2 , 2015, Meteoritics & planetary science.

[136]  Kentaro Uesugi,et al.  Elemental Compositions of Comet 81P/Wild 2 Samples Collected by Stardust , 2006, Science.

[137]  T. Tyliszczak,et al.  INCORPORATION OF A LATE-FORMING CHONDRULE INTO COMET WILD 2 , 2011, 1112.3943.

[138]  I. Hutcheon,et al.  Chronology of the early Solar System from chondrule-bearing calcium-aluminium-rich inclusions , 2005, Nature.

[139]  S. Bajt,et al.  Infrared spectroscopy of Wild 2 particle hypervelocity tracks in Stardust aerogel: Evidence for the presence of volatile organics in cometary dust , 2007 .

[140]  L. d'Hendecourt,et al.  A ‘dry’ condensation origin for circumstellar carbonates , 2005, Nature.

[141]  D. Brownlee,et al.  Constraints on the Formation Age of Cometary Material from the NASA Stardust Mission , 2009, Science.

[142]  David P. Anderson,et al.  Stardust Interstellar Preliminary Examination III: Infrared spectroscopic analysis of interstellar dust candidates , 2014 .

[143]  K. McKeegan,et al.  ON AN IRRADIATION ORIGIN FOR MAGNESIUM ISOTOPE ANOMALIES IN METEORITIC HIBONITE , 2009 .

[144]  H. Leroux,et al.  Mineralogy and petrology of Stardust particles encased in the bulb of track 80: TEM investigation of the Wild 2 fine-grained material , 2012 .

[145]  A. Westphal,et al.  Comparison of the oxidation state of Fe in comet 81P/Wild 2 and chondritic-porous interplanetary dust particles , 2010, 1005.3858.

[146]  M. Burchell,et al.  Investigation of iron sulfide impact crater residues: A combined analysis by scanning and transmission electron microscopy , 2011 .

[147]  Andrew Steele,et al.  Comet 81P/Wild 2 Under a Microscope , 2006, Science.

[148]  D. Brownlee,et al.  Textures and isotopic compositions of carbonaceous materials in A and B-type Stardust tracks: Track 130 (Bidi), track 141 (Coki) and track 80 (Tule) , 2013 .

[149]  D. Lauretta,et al.  Extraterrestrial Flux of Potentially Prebiotic C, N, and P to the Early Earth , 2008, Origins of Life and Evolution of Biospheres.

[150]  N. Tomioka,et al.  Silicate minerals and Si‐O glass in comet Wild 2 samples: Transmission electron microscopy , 2008 .

[151]  George D. Cody,et al.  The origin and evolution of chondrites recorded in the elemental and isotopic compositions of their macromolecular organic matter , 2007 .

[152]  F. Brenker,et al.  In situ identification of a CAI candidate in 81P/Wild 2 cometary dust by confocal high resolution synchrotron X-ray fluorescence , 2009 .

[153]  T. Tyliszczak,et al.  Quantitative organic and light‐element analysis of comet 81P/Wild 2 particles using C‐, N‐, and O‐μ‐XANES , 2008 .

[154]  Mark J. Burchell,et al.  COSMIC DUST COLLECTION IN AEROGEL , 2006 .

[155]  M. Burchell,et al.  Capture effects in carbonaceous material: A Stardust analogue study , 2009 .

[156]  D. Brownlee,et al.  Interplanetary Dust; A New Source of Extraterrestrial Material for Laboratory Studies , 1977 .

[157]  Bruce T. Draine,et al.  RADIATION PRESSURE ON FLUFFY SUBMICRON-SIZED GRAINS , 2015, 1508.00646.

[158]  S. Sutton,et al.  Valence of titanium and vanadium in pyroxene in refractory inclusion interiors and rims , 2007 .