Universal quantum computation with temporal-mode bilayer square lattices

We propose an experimental design for universal continuous-variable quantum computation that incorporates recent innovations in linear-optics-based continuous-variable cluster state generation and cubic-phase gate teleportation. The first ingredient is a protocol for generating the bilayer-square-lattice cluster state (a universal resource state) with temporal modes of light. With this state, measurement-based implementation of Gaussian unitary gates requires only homodyne detection. Second, we describe a measurement device that implements an adaptive cubic-phase gate, up to a random phase-space displacement. It requires a two-step sequence of homodyne measurements and consumes a (non-Gaussian) cubic-phase state.

[1]  Thomas Coudreau,et al.  Compact Gaussian quantum computation by multi-pixel homodyne detection , 2013, 1303.5355.

[2]  A. EINsTEIN,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete ' ? , 2011 .

[3]  Warit Asavanant,et al.  Quantum nondemolition gate operations and measurements in real time on fluctuating signals , 2017, Physical Review A.

[4]  Akira Furusawa,et al.  Creation, Storage, and On-Demand Release of Optical Quantum States with a Negative Wigner Function , 2013, 1309.3516.

[5]  Olivier Pfister,et al.  Experimental realization of multipartite entanglement of 60 modes of a quantum optical frequency comb. , 2013, Physical review letters.

[6]  George Siopsis,et al.  Repeat-until-success cubic phase gate for universal continuous-variable quantum computation , 2014, 1412.0336.

[7]  A. Furusawa,et al.  Demonstration of a fully tunable entangling gate for continuous-variable one-way quantum computation , 2014, 1410.0472.

[8]  Akira Furusawa,et al.  Demonstration of unconditional one-way quantum computations for continuous variables. , 2010, Physical review letters.

[9]  Akira Furusawa,et al.  Demonstration of a quantum nondemolition sum gate. , 2008, Physical review letters.

[10]  Giulia Ferrini,et al.  Polynomial approximation of non-Gaussian unitaries by counting one photon at a time , 2017, 1703.06693.

[11]  S. Walborn,et al.  Entropic entanglement criteria for continuous variables. , 2009, Physical review letters.

[12]  A. Blais,et al.  Squeezing and quantum state engineering with Josephson travelling wave amplifiers , 2017, npj Quantum Information.

[13]  Hidehiro Yonezawa,et al.  Implementation of a quantum cubic gate by an adaptive non-Gaussian measurement , 2015, 1507.08782.

[14]  Nicolas C. Menicucci,et al.  Weaving quantum optical frequency combs into continuous-variable hypercubic cluster states , 2013, 1309.4105.

[15]  Akira Furusawa,et al.  Detecting genuine multipartite continuous-variable entanglement , 2003 .

[16]  J. Preskill,et al.  Encoding a qubit in an oscillator , 2000, quant-ph/0008040.

[17]  Hidehiro Yonezawa,et al.  Generating superposition of up-to three photons for continuous variable quantum information processing. , 2012, Optics express.

[18]  S. P. Walborn,et al.  Systematic construction of genuine-multipartite-entanglement criteria in continuous-variable systems using uncertainty relations , 2014, 1407.7248.

[19]  Rafael N. Alexander,et al.  Flexible quantum circuits using scalable continuous-variable cluster states , 2016, 1605.04914.

[20]  Yu Shiozawa,et al.  Generation of one-million-mode continuous-variable cluster state by unlimited time-domain multiplexing , 2016, 1606.06688.

[21]  Xiaowei Deng,et al.  Gate sequence for continuous variable one-way quantum computation , 2013, Nature Communications.

[22]  T. Ralph,et al.  Universal quantum computation with continuous-variable cluster states. , 2006, Physical review letters.

[23]  Rafael N. Alexander,et al.  One-way quantum computing with arbitrarily large time-frequency continuous-variable cluster states from a single optical parametric oscillator , 2015, 1509.00484.

[24]  Akira Furusawa,et al.  Demonstration of deterministic and high fidelity squeezing of quantum information , 2007, quant-ph/0702049.

[25]  Nicolas C. Menicucci,et al.  The optical frequency comb as a one-way quantum computer , 2008, 0811.2799.

[26]  Barry C Sanders,et al.  Efficient classical simulation of optical quantum information circuits. , 2002, Physical review letters.

[27]  Rafael N. Alexander,et al.  Noise analysis of single-mode Gaussian operations using continuous-variable cluster states , 2013, 1311.3538.

[28]  N. C. Menicucci,et al.  Ultracompact generation of continuous-variable cluster states , 2007, quant-ph/0703096.

[29]  Hidehiro Yonezawa,et al.  Experimental realization of a dynamic squeezing gate , 2014, 1409.3754.

[30]  Shota Yokoyama,et al.  Ultra-large-scale continuous-variable cluster states multiplexed in the time domain , 2013, Nature Photonics.

[31]  C. Fabre,et al.  Multipartite Entanglement of a Two-Separable State. , 2016, Physical review letters.

[32]  Radim Filip,et al.  Measurement-induced continuous-variable quantum interactions , 2005 .

[33]  Nicolas C. Menicucci,et al.  Graphical calculus for Gaussian pure states , 2010, 1007.0725.

[34]  Jens Eisert,et al.  Efficient measurement-based quantum computing with continuous-variable systems , 2011, 1112.2641.

[35]  Akira Furusawa,et al.  Demonstration of a reversible phase-insensitive optical amplifier , 2011, 1101.1139.

[36]  N. C. Menicucci,et al.  Quantum Computing with Continuous-Variable Clusters , 2009, 0903.3233.

[37]  Akira Furusawa,et al.  Universal linear Bogoliubov transformations through one-way quantum computation , 2010 .

[38]  S. Braunstein,et al.  Quantum computation over continuous variables , 1998 .

[39]  Olivier Pfister,et al.  One-way quantum computing in the optical frequency comb. , 2008, Physical review letters.

[40]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[41]  N. C. Menicucci,et al.  Fault-tolerant measurement-based quantum computing with continuous-variable cluster states. , 2013, Physical review letters.

[42]  Hidehiro Yonezawa,et al.  Emulating quantum cubic nonlinearity , 2013 .