Nonrigid registration of 3D tensor medical data

New medical imaging modalities offering multi-valued data, such as phase contrast MRA and diffusion tensor MRI, require general representations for the development of automated algorithms. In this paper we propose a unified framework for the registration of medical volumetric multi-valued data using local matching. The paper extends the usual concept of similarity between two pieces of data to be matched, commonly used with scalar (intensity) data, to the general tensor case. Our approach to registration is based on a multiresolution scheme, where the deformation field estimated in a coarser level is propagated to provide an initial deformation in the next finer one. In each level, local matching of areas with a high degree of local structure and subsequent interpolation are performed. Consequently, we provide an algorithm to assess the amount of structure in generic multi-valued data by means of gradient and correlation computations. The interpolation step is carried out by means of the Kriging estimator, which provides a novel framework for the interpolation of sparse vector fields in medical applications. The feasibility of the approach is illustrated by results on synthetic and clinical data.

[1]  Lambertus Hesselink,et al.  Visualizing second-order tensor fields with hyperstreamlines , 1993, IEEE Computer Graphics and Applications.

[2]  S Soimakallio,et al.  Carotid artery stenosis: clinical efficacy of MR phase-contrast flow quantification as an adjunct to MR angiography. , 1995, Radiology.

[3]  Carl-Fredrik Westin,et al.  Image Processing for Diffusion Tensor Magnetic Resonance Imaging , 1999, MICCAI.

[4]  R. Kikinis,et al.  Magnetic resonance imaging shows orientation and asymmetry of white matter fiber tracts , 1998, Brain Research.

[5]  Isabelle Bloch,et al.  Inferring the Brain Connectivitiy from MR Diffusion Tensor Data , 1999, MICCAI.

[6]  James C. Gee,et al.  Techniques for spatial normalization of diffusion tensor images , 2000, Medical Imaging: Image Processing.

[7]  Fionn Murtagh,et al.  Image Processing and Data Analysis - The Multiscale Approach , 1998 .

[8]  Ron Kikinis,et al.  3D Image Matching Using a Finite Element Based Elastic Deformation Model , 1999, MICCAI.

[9]  T. Moon,et al.  Mathematical Methods and Algorithms for Signal Processing , 1999 .

[10]  Steven Kay,et al.  Fundamentals Of Statistical Signal Processing , 2001 .

[11]  Guy Marchal,et al.  Multimodality image registration by maximization of mutual information , 1997, IEEE Transactions on Medical Imaging.

[12]  Bing Wang,et al.  Diffusion-weighted MR imaging , 1999 .

[13]  J. E. Tanner,et al.  Spin diffusion measurements : spin echoes in the presence of a time-dependent field gradient , 1965 .

[14]  William M. Wells,et al.  Medical Image Computing and Computer-Assisted Intervention — MICCAI’98 , 1998, Lecture Notes in Computer Science.

[15]  Juan Ruiz-Alzola,et al.  Nonrigid Registration of 3D Scalar, Vector and Tensor Medical Data , 2000, MICCAI.

[16]  N J Pelc,et al.  Determination of cerebral blood flow with a phase-contrast cine MR imaging technique: evaluation of normal subjects and patients with arteriovenous malformations. , 1992, Radiology.

[17]  A G Sorensen,et al.  Diffusion-weighted MR imaging in acute stroke: theoretic considerations and clinical applications. , 1999, AJR. American journal of roentgenology.

[18]  N. Cressie Kriging Nonstationary Data , 1986 .

[19]  Max A. Viergever,et al.  A survey of medical image registration , 1998, Medical Image Anal..

[20]  L. Segel,et al.  Mathematics Applied to Continuum Mechanics , 1977 .

[21]  Paul A. Viola,et al.  Multi-modal volume registration by maximization of mutual information , 1996, Medical Image Anal..

[22]  P. Basser,et al.  Estimation of the effective self-diffusion tensor from the NMR spin echo. , 1994, Journal of magnetic resonance. Series B.

[23]  S Pajevic,et al.  Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: Application to white matter fiber tract mapping in the human brain , 1999, Magnetic resonance in medicine.

[24]  Jürgen Weese,et al.  A comparison of similarity measures for use in 2-D-3-D medical image registration , 1998, IEEE Transactions on Medical Imaging.

[25]  Carl-Fredrik Westin,et al.  Processing and visualization for diffusion tensor MRI , 2002, Medical Image Anal..

[26]  Rob W. Parrott,et al.  Towards statistically optimal interpolation for 3D medical imaging , 1993, IEEE Engineering in Medicine and Biology Magazine.

[27]  C L Dumoulin,et al.  Three‐dimensional phase contrast angiography , 1989, Magnetic resonance in medicine.

[28]  Nicholas Ayache,et al.  Towards a Better Comprehension of Similarity Measures Used in Medical Image Registration , 1999, MICCAI.

[29]  P. Grenier,et al.  MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. , 1986, Radiology.

[30]  P. Basser,et al.  Diffusion tensor MR imaging of the human brain. , 1996, Radiology.

[31]  Computer-Assisted Intervention,et al.  Medical Image Computing and Computer-Assisted Intervention – MICCAI’99 , 1999, Lecture Notes in Computer Science.

[32]  James C. Gee,et al.  Elastic Matching of Diffusion Tensor Images , 2000, Comput. Vis. Image Underst..

[33]  Tomaso Poggio,et al.  Computational vision and regularization theory , 1985, Nature.

[34]  Graeme M. Bydder,et al.  Advanced MR Imaging Techniques , 1997 .

[35]  Ruzena Bajcsy,et al.  Strategies for Data Reorientation during Non-rigid Warps of Diffusion Tensor Images , 1999, MICCAI.

[36]  K. Mardia,et al.  Kriging and splines with derivative information , 1996 .

[37]  M. Hutchinson,et al.  Splines — more than just a smooth interpolator , 1994 .

[38]  P. Basser,et al.  Toward a quantitative assessment of diffusion anisotropy , 1996, Magnetic resonance in medicine.

[39]  Isabelle Bloch,et al.  Regularization of MR Diffusion Tensor Maps for Tracking Brain White Matter Bundles , 1998, MICCAI.

[40]  Ruzena Bajcsy,et al.  Multiresolution elastic matching , 1989, Comput. Vis. Graph. Image Process..

[41]  Nicholas Ayache,et al.  Medical Image Analysis: Progress over Two Decades and the Challenges Ahead , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[42]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[43]  R Kikinis,et al.  Detection of point landmarks in multidimensional tensor data , 2001, Signal Process..

[44]  Gordon L. Kindlmann,et al.  Hue-balls and lit-tensors for direct volume rendering of diffusion tensor fields , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[45]  Karl Rohr On 3D differential operators for detecting point landmarks , 1997, Image Vis. Comput..

[46]  Gordon L. Kindlmann,et al.  Tensorlines: advection-diffusion based propagation through diffusion tensor fields , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).