On the numerical implementation of variational arbitrary Lagrangian–Eulerian (VALE) formulations

This paper is concerned with the implementation of variational arbitrary Lagrangian–Eulerian formulations, also known as variational r-adaption methods. These methods seek to minimize the energy function with respect to the finite-element mesh over the reference configuration of the body. We propose a solution strategy based on a viscous regularization of the configurational forces. This procedure eliminates the ill-posedness of the problem without changing its solutions, i.e. the minimizers of the regularized problems are also minimizers of the original functional. We also develop strategies for optimizing the triangulation, or mesh connectivity, and for allowing nodes to migrate in and out of the boundary of the domain. Selected numerical examples demonstrate the robustness of the solution procedures and their ability to produce highly anisotropic mesh refinement in regions of high energy density.

[1]  C. Geiger,et al.  Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben , 1999 .

[2]  Pururav Thoutireddy Variational arbitrary Lagrangian-Eulerian method , 2003 .

[3]  M. Ortiz,et al.  The variational formulation of viscoplastic constitutive updates , 1999 .

[4]  ARISTIDES A. G. REQUICHA,et al.  Representations for Rigid Solids: Theory, Methods, and Systems , 1980, CSUR.

[5]  M. Ortiz,et al.  A variational r‐adaption and shape‐optimization method for finite‐deformation elasticity , 2004 .

[6]  Paul Steinmann,et al.  An ALE formulation based on spatial and material settings of continuum mechanics. Part 2: Classification and applications , 2004 .

[7]  Barry Joe,et al.  Construction of three-dimensional Delaunay triangulations using local transformations , 1991, Comput. Aided Geom. Des..

[8]  J. D. Eshelby The elastic energy-momentum tensor , 1975 .

[9]  Michael Ortiz,et al.  Error estimation and adaptive meshing in strongly nonlinear dynamic problems , 1999 .

[10]  Paul Steinmann,et al.  An ALE formulation based on spatial and material settings of continuum mechanics. Part 1: Generic hyperelastic formulation , 2004 .

[11]  Marc Noy,et al.  A lower bound on the number of triangulations of planar point sets , 2004, Comput. Geom..

[12]  R. Mueller,et al.  On material forces and finite element discretizations , 2002 .

[13]  B. Joe Three-dimensional triangulations from local transformations , 1989 .

[14]  M. Ortiz,et al.  Tetrahedral mesh generation based on node insertion in crystal lattice arrangements and advancing-front-Delaunay triangulation , 2000 .

[15]  Carlos A. Felippa,et al.  Numerical experiments in finite element grid optimization by direct energy search , 1977 .

[16]  R. Liska,et al.  Arbitrary Lagrangian Eulerian method for laser plasma simulations , 2008 .

[17]  Samuel Rippa,et al.  Minimal roughness property of the Delaunay triangulation , 1990, Comput. Aided Geom. Des..

[18]  J. D. Eshelby,et al.  The force on an elastic singularity , 1951, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[19]  Elizabeth Eskow,et al.  A New Modified Cholesky Factorization , 1990, SIAM J. Sci. Comput..

[20]  Charles L. Lawson,et al.  Properties of n-dimensional triangulations , 1986, Comput. Aided Geom. Des..

[21]  Martti Mäntylä,et al.  Introduction to Solid Modeling , 1988 .

[22]  C. Felippa Optimization of finite element grids by direct energy search , 1976 .

[23]  Barry Joe,et al.  Construction of Three-Dimensional Improved-Quality Triangulations Using Local Transformations , 1995, SIAM J. Sci. Comput..

[24]  Charles L. Lawson,et al.  Transforming triangulations , 1972, Discret. Math..

[25]  Christoph M. Hoffmann,et al.  Geometric and Solid Modeling , 1989 .

[26]  Pedro V. Marcal,et al.  Optimization of Finite Element Grids Based on Minimum Potential Energy. , 1973 .