Euclidean Hub-and-Spoke Networks

The hub-and-spoke distribution paradigm has been a fundamental principle in geographic network design for more than 40 years. One of the primary advantages that such networks possess is their ability to exploit economies of scale in transportation by aggregating network flows through common sources. In this paper, we consider the problem of designing an optimal hub-and-spoke network in continuous Euclidean space: the “spokes” of the network are distributed uniformly over a service region, and our objective is to determine the optimal number of hub nodes and their locations. We consider seven different backbone network topologies for connecting the hub nodes, namely, the Steiner and minimum spanning trees, a travelling salesman tour, a star network, a capacitated vehicle routing tour, a complete bipartite graph, and a complete graph. We also perform an additional analysis on a multilevel network in which network flows move through multiple levels of transshipment before reaching the service region. We desc...

[1]  G. F. Newell,et al.  Configuration of physical distribution networks , 1986, Networks.

[2]  J. Yukich,et al.  Limit Theorems and Rates of Convergence for Euclidean Functionals , 1994 .

[3]  G. F. Newell Scheduling, Location, Transportation, and Continuum Mechanics: Some Simple Approximations to Optimization Problems , 1973 .

[4]  Thomas L. Magnanti,et al.  Network Design and Transportation Planning: Models and Algorithms , 1984, Transp. Sci..

[5]  David Simchi-Levi,et al.  Location-Routing Problems with Uncertainty , 1995 .

[6]  Vijay V. Vazirani,et al.  Approximation Algorithms , 2001, Springer Berlin Heidelberg.

[7]  Carlos F. Daganzo,et al.  Logistics Systems Analysis , 1991 .

[8]  Carlos F. Daganzo,et al.  DESIGN OF MULTIPLE-VEHICLE DELIVERY TOURS II. OTHER METRICS , 1986 .

[9]  Martine Labbé,et al.  Solving the hub location problem in a star–star network , 2008, Networks.

[10]  C. Bamford,et al.  Geography of transport , 1978 .

[11]  S. Raghavan,et al.  Dual-Based Local Search for the Connected Facility Location and Related Problems , 2010, INFORMS J. Comput..

[12]  Dorit S. Hochbaum,et al.  When are NP-hard location problems easy? , 1984, Ann. Oper. Res..

[13]  Morton E. O'Kelly,et al.  A geographer's analysis of hub-and-spoke networks☆ , 1998 .

[14]  Dominique Peeters,et al.  Modelling a rail/road intermodal transportation system , 2004 .

[15]  Lian Qi,et al.  Production , Manufacturing and Logistics Worst-case analysis of demand point aggregation for the Euclidean p-median problem , 2009 .

[16]  B. Slack,et al.  The Geography of Transport Systems , 2006 .

[17]  Gang Yu,et al.  AIRLINE NETWORK DESIGN AND HUB LOCATION PROBLEMS , 1996 .

[18]  James F. Campbell Hub Location and the p-Hub Median Problem , 1996, Oper. Res..

[19]  Thomas L. Magnanti,et al.  Extremum Properties of Hexagonal Partitioning and the Uniform Distribution in Euclidean Location , 1988, SIAM J. Discret. Math..

[20]  John Gunnar Carlsson,et al.  Continuous Facility Location with Backbone Network Costs , 2015, Transp. Sci..

[21]  Alexander H. G. Rinnooy Kan,et al.  Bounds and Heuristics for Capacitated Routing Problems , 1985, Math. Oper. Res..

[22]  Michael Pinedo,et al.  Scheduling: Theory, Algorithms, and Systems , 1994 .

[23]  André Langevin,et al.  CONTINUOUS APPROXIMATIONA MODELS IN FREIGHT DISTRIBUTION: AN OVERVIEW , 1996 .

[24]  Mark S. Daskin,et al.  AN INTEGRATED MODEL OF FACILITY LOCATION AND TRANSPORTATION NETWORK DESIGN , 2001 .

[25]  J. Beardwood,et al.  The shortest path through many points , 1959, Mathematical Proceedings of the Cambridge Philosophical Society.

[26]  Gérard P. Cachon Retail Store Density and the Cost of Greenhouse Gas Emissions , 2011, Manag. Sci..

[27]  Jozef Petrek,et al.  A large hierarchical network star - star topology design algorithm , 2001, Eur. Trans. Telecommun..

[28]  A. Mas-Colell,et al.  Microeconomic Theory , 1995 .

[29]  Eitan Zemel,et al.  Probabilistic analysis of geometric location problems , 1984, Ann. Oper. Res..

[30]  Thomas L. Magnanti,et al.  Designing satellite communication networks by zero - one quadratic programming , 1989, Networks.

[31]  Gordon F. Newell Design of multiple-vehicle delivery tours—III valuable goods , 1986 .

[32]  Miguel A. Figliozzi,et al.  A Methodology to Evaluate the Competitiveness of Electric Delivery Trucks , 2013 .

[33]  Harvey J. Miller,et al.  THE HUB NETWORK DESIGN PROBLEM: A REVIEW AND SYNTHESIS. , 1994 .

[34]  M. Labbé,et al.  Solving the hub location problem in a star–star network , 2008 .

[35]  Johan Woxenius,et al.  Developing intermodal transport for small flows over short distances , 2004 .

[36]  D. Youla,et al.  Image Restoration by the Method of Convex Projections: Part 1ߞTheory , 1982, IEEE Transactions on Medical Imaging.

[37]  Steven R. Gordon,et al.  Design of air transportation networks , 1973 .

[38]  James F. Campbell CONTINUOUS AND DISCRETE DEMAND HUB LOCATION PROBLEMS , 1993 .

[39]  P. Miranda,et al.  INCORPORATING INVENTORY CONTROL DECISIONS INTO A STRATEGIC DISTRIBUTION NETWORK DESIGN MODEL WITH STOCHASTIC DEMAND , 2004 .

[40]  Saïd Salhi,et al.  Location-routing: Issues, models and methods , 2007, Eur. J. Oper. Res..

[41]  Hande Yaman,et al.  Star p-hub center problem and star p-hub median problem with bounded path lengths , 2012, Comput. Oper. Res..

[42]  Zvi Drezner,et al.  Covering continuous demand in the plane , 2010, J. Oper. Res. Soc..

[43]  Ying Li,et al.  An Approximation Algorithm for the Continuous k-Medians Problem in a Convex Polygon , 2014, INFORMS J. Comput..

[44]  Carlos F. Daganzo,et al.  Design of multiple-vehicle delivery tours--I a ring-radial network , 1986 .

[45]  Stefan Nickel,et al.  Hub Location Problems in Urban Traffic Networks , 2001 .

[46]  M. Hesse,et al.  The transport geography of logistics and freight distribution , 2004 .

[47]  J. Steele Subadditive Euclidean Functionals and Nonlinear Growth in Geometric Probability , 1981 .

[48]  Michel Gendreau,et al.  A continuous approximation model for the fleet composition problem , 2012 .