The structural and photometric properties of early-type galaxies in hierarchical models

We present predictions for the structural and photometric properties of early-type galaxies in the Lambda cold dark matter (ACDM) cosmology from the published semi-analytical galaxy formation models of Baugh et al. and Bower et al. These calculations were made with the GALFORM code, which tracks the evolution of the disc and bulge components of a galaxy, using a self-consistent model to compute the scalelengths. The sizes of galactic discs are determined by the conservation of the angular momentum of cooling gas. The sizes of merger remnants are computed by applying the virial theorem and conserving the binding energy of the progenitors and their orbital energy. There are a number of important differences between the two galaxy formation models. To suppress the overproduction of bright galaxies, the Bower et al. model employs active galactic nuclei heating to stifle gas cooling, whereas the Baugh et al. model invokes a superwind which ejects cooled gas. Also, in the Baugh et al. model a top-heavy stellar initial mass function is adopted in starbursts. We compare the model predictions with observational results derived from the Sloan Digital Sky Survey. The model enjoys a number of notable successes, such as giving reasonable reproductions of the local Faber-Jackson relation (velocity dispersion-luminosity), the velocity dispersion-age relation, and the Fundamental Plane relating the luminosity, velocity dispersion and effective radius of spheroids. These achievements are all the more remarkable when one bears in mind that none of the parameters has been adjusted to refine the model predictions. We study how the residuals around the Fundamental Plane relation depend on galaxy properties. We examine in detail the physical ingredients of the calculation of galaxy sizes in GALFORM, showing which components have the most influence over our results. We also study the evolution of the scaling relations with redshift. However, in spite of the successes, there are some important disagreements between the predictions of the model and observations: the brightest model spheroids have effective radii smaller than observed and the zero-point of the Fundamental Plane shows little or no evolution with redshift in the model.

[1]  E. Lada,et al.  Spatial Distribution of Embedded Clusters in the Rosette Molecular Cloud: Implications for Cluster Formation , 1997 .

[2]  R. Nichol,et al.  Early-Type Galaxies in the Sloan Digital Sky Survey. IV. Colors and Chemical Evolution , 2003, astro-ph/0301629.

[3]  The fundamental plane of isolated early‐type galaxies , 2005, astro-ph/0505265.

[4]  D. Forbes,et al.  On the relationship between age and dynamics in elliptical galaxies , 1999, astro-ph/9906368.

[5]  University of Durham,et al.  The effects of photoionization on galaxy formation – I. Model and results at z=0 , 2002 .

[6]  A. Cimatti,et al.  The evolution of early-type galaxies at z ~ 1 from the K20 survey , 2005, astro-ph/0506655.

[7]  A. Sandage,et al.  Color--absolute magnitude relation for E and S0 galaxies. III. Fully corrected photometry for 405 galaxies: comparison of color distributions for E and S0 field and cluster galaxies. [Virgo, coma, centaurus, and fornax clusters] , 1978 .

[8]  S. Faber,et al.  Contraction of Dark Matter Galactic Halos Due to Baryonic Infall , 1986 .

[9]  P. Dokkum,et al.  The Fundamental Plane and the evolution of the M/L ratio of early-type field galaxies up to z ∼ 1 , 2002, astro-ph/0211566.

[10]  Alessandro Bressan,et al.  Can the faint submillimetre galaxies be explained in the Λ cold dark matter model , 2005 .

[11]  Carlos S. Frenk,et al.  A recipe for galaxy formation , 1994 .

[12]  S. Djorgovski,et al.  Fundamental Properties of Elliptical Galaxies , 1987 .

[13]  D. Forbes,et al.  Dependence of the Fundamental Plane Scatter on Galaxy Age , 1998, astro-ph/9809319.

[14]  Mass-to-Light Ratios of Field Early-Type Galaxies at z ~ 1 from Ultradeep Spectroscopy: Evidence for Mass-dependent Evolution , 2005, astro-ph/0502228.

[15]  J. Gerssen,et al.  The discovery of a galaxy-wide superwind from a young massive galaxy at redshift z ≈ 3 , 2005, Nature.

[16]  Effects of feedback on the morphology of galaxy discs , 2005, astro-ph/0503676.

[17]  C. Lacey,et al.  The Local Space Density of Sb-Sdm Galaxies as Function of Their Scale Size, Surface Brightness, and Luminosity , 2000, astro-ph/0008071.

[18]  Max Pettini Alice E. Shapley Charles C. Steidel Jean-G Giavalisco The Rest-Frame Optical Spectra of Lyman Break Galaxies: Star Formation, Extinction, Abundances, and Kinematics* , 2001 .

[19]  S. M. Fall,et al.  The kinematic properties of faint elliptical galaxies. , 1983 .

[20]  G. Lucia,et al.  The hierarchical formation of the brightest cluster galaxies , 2006, astro-ph/0606519.

[21]  The dissipative merger progenitors of elliptical galaxies , 2006, astro-ph/0603497.

[22]  B. Lanzoni,et al.  The tilt of the fundamental plane of elliptical galaxies — I. Exploring dynamical and structural effects , 1996, astro-ph/9601100.

[23]  M. Franx,et al.  Galaxy Size Evolution at High Redshift and Surface Brightness Selection Effects: Constraints from the Hubble Ultra Deep Field , 2004, astro-ph/0406562.

[24]  The Fundamental Plane for z=0.8-0.9 cluster galaxies , 2006, astro-ph/0601403.

[25]  P. Dokkum,et al.  The Fundamental Plane in CL 0024 at z = 0.4: implications for the evolution of the mass-to-light ratio , 1996, astro-ph/9603063.

[26]  Colors, Magnitudes, and Velocity Dispersions in Early-Type Galaxies: Implications for Galaxy Ages and Metallicities , 2004, astro-ph/0409571.

[27]  Cosmological parameters from CMB measurements and the final 2dFGRS power spectrum , 2005, astro-ph/0507583.

[28]  A. Sandage,et al.  The color-absolute magnitude relation for E and S0 galaxies. II - New colors, magnitudes, and types for 405 galaxies , 1978 .

[29]  G. Kauffmann,et al.  The formation history of elliptical galaxies , 2005, astro-ph/0509725.

[30]  Galaxy formation using halo merger histories taken from N‐body simulations , 2002, astro-ph/0210141.

[31]  D. Kelson,et al.  The Detailed Fundamental Plane of Two High-Redshift Clusters: MS 2053–04 at z = 0.58 and MS 1054–03 at z = 0.83 , 2003, astro-ph/0312236.

[32]  S. Faber,et al.  Velocity dispersions and mass-to-light ratios for elliptical galaxies. , 1976 .

[33]  G. Bruzual Star Formation in Early‐Type Galaxies , 1998 .

[34]  D. Kelson,et al.  Luminosity Evolution of Field Early-Type Galaxies to z = 0.55 , 2001, astro-ph/0104155.

[35]  G. Efstathiou,et al.  The formation of dark halos in a universe dominated by cold dark matter , 1988 .

[36]  A. Sandage,et al.  The surface brightness test for the expansion of the universe. II. Radii, surface brightness, and absolute magnitude correlations for nearby E galaxies , 1990 .

[37]  S. White,et al.  The response of a spheroid to a disc field or were bulges ever ellipticals , 1984 .

[38]  R. Nichol,et al.  Early-type Galaxies in the Sloan Digital Sky Survey. II. Correlations between Observables , 2003, astro-ph/0301624.

[39]  C. Baugh,et al.  A primer on hierarchical galaxy formation: the semi-analytical approach , 2006, astro-ph/0610031.

[40]  R. Nichol,et al.  Early-Type Galaxies in the Sloan Digital Sky Survey. III. The Fundamental Plane , 2003, astro-ph/0301626.

[41]  The Star Formation Epoch of the Most Massive Early-Type Galaxies , 2006, astro-ph/0609587.

[42]  J. Peacock,et al.  Simulations of the formation, evolution and clustering of galaxies and quasars , 2005, Nature.

[43]  H. Rix,et al.  The Evolution of Rest-Frame K-Band Properties of Early-Type Galaxies from z = 1 to the Present , 2005, astro-ph/0511581.

[44]  grape-sph chemodynamical simulation of elliptical galaxies — II. Scaling relations and the fundamental plane , 2005, astro-ph/0506094.

[45]  John Kormendy,et al.  Brightness distributions in compact and normal galaxies. II. Structure parameters of the spheroidal component. , 1977 .

[46]  Total Galaxy Magnitudes and Effective Radii from Petrosian Magnitudes and Radii , 2005, astro-ph/0504287.

[47]  Kinematic and chemical evolution of early-type galaxies , , 2004, astro-ph/0412250.

[48]  E. Bell,et al.  The Tilt of the Fundamental Plane: Three-Quarters Structural Nonhomology, One-Quarter Stellar Population , 2003, astro-ph/0311383.

[49]  Konrad Kuijken,et al.  THE LUMINOSITY-SIZE AND MASS-SIZE RELATIONS OF GALAXIES OUT TO z ~ 3 , 2004 .

[50]  Galaxy mergers with various mass ratios: properties of remnants , 2005, astro-ph/0503189.

[51]  S. Djorgovski,et al.  Near-Infrared Imaging of Early-Type Galaxies. III. The Near-Infrared Fundamental Plane , 1998, astro-ph/9806315.

[52]  C. Baugh,et al.  Evolution of the Hubble sequence in hierarchical models for galaxy formation , 1996, astro-ph/9602085.

[53]  E. Quataert,et al.  Red mergers and the assembly of massive elliptical galaxies: the fundamental plane and its projections , 2006, astro-ph/0601400.

[54]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[55]  R. Bender,et al.  Dynamically hot galaxies. I - Structural properties , 1992 .

[56]  R. S. Ellis,et al.  The Assembly History of Field Spheroidals: Evolution of Mass-to-Light Ratios and Signatures of Recent Star Formation , 2005, astro-ph/0503164.

[57]  R. Davies,et al.  Spectroscopy and photometry of elliptical galaxies. I: a new distance estimator , 1987 .

[58]  Durham,et al.  What Shapes the Luminosity Function of Galaxies? , 2003, astro-ph/0302450.

[59]  Galaxies and Intergalactic Matter at Redshift z ~ 3: Overview* , 2002, astro-ph/0210314.

[60]  Didier Vibert,et al.  GALICS I: A hybrid N-body semi-analytic model of hierarchical galaxy formation , 2003 .

[61]  C. Baugh,et al.  Hierarchical galaxy formation , 2000, astro-ph/0007281.

[62]  R. Bouwens,et al.  Evolution in the Cluster Early-Type Galaxy Size-Surface Brightness Relation at z ≃1 , 2005, astro-ph/0503365.

[63]  Weak homology of elliptical galaxies , 2002, astro-ph/0202208.

[64]  T. Naab,et al.  The Validity of the Adiabatic Contraction Approximation for Dark Matter Halos , 2002 .

[65]  A. Szalay,et al.  A Robust Classification of Galaxy Spectra: Dealing with Noisy and Incomplete Data , 1999, astro-ph/9901300.

[66]  P. Hopkins,et al.  The Fundamental Scaling Relations of Elliptical Galaxies , 2005, astro-ph/0511053.

[67]  R. Nichol,et al.  Early-Type Galaxies in the Sloan Digital Sky Survey. I. The Sample , 2003 .

[68]  Kinematic properties and stellar populations of faint early-type galaxies - I. Velocity dispersion measurements of central Coma galaxies , 2005, astro-ph/0506521.

[69]  G. Kauffmann The age of elliptical galaxies and bulges in a merger model , 1995, astro-ph/9502096.

[70]  The DEEP Groth Strip Survey. IX. Evolution of the Fundamental Plane of Field Galaxies , 2003, astro-ph/0307242.

[71]  S. McGaugh,et al.  Revised version submitted to The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 04/03/99 THE COMPRESSION OF DARK MATTER HALOS BY BARYONIC INFALL , 2005 .

[72]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[73]  Dark matter halo response to the disc growth , 2006, astro-ph/0604587.

[74]  I. Jørgensen,et al.  The Fundamental Plane for cluster E and S0 galaxies , 1995, astro-ph/9511139.

[75]  C. Baugh,et al.  The metal enrichment of the intracluster medium in hierarchical galaxy formation models , 2004, astro-ph/0408529.

[76]  J. Lucey,et al.  NOAO Fundamental Plane Survey. II. Age and Metallicity along the Red Sequence from Line-Strength Data , 2005, astro-ph/0505301.

[77]  W. Percival,et al.  Cosmological parameters from cosmic microwave background measurements and the final 2dF Galaxy Redshift Survey power spectrum , 2006 .

[78]  Oxford,et al.  Breaking the hierarchy of galaxy formation , 2005, astro-ph/0511338.