Properties of Prior and Posterior Distributions for Multivariate Categorical Response Data Models

In this article, we model multivariate categorical (binary and ordinal) response data using a very rich class of scale mixture of multivariate normal (SMMVN) link functions to accommodate heavy tailed distributions. We consider both noninformative as well as informative prior distributions for SMMVN-link models. The notation of informative prior elicitation is based on available similar historical studies. The main objectives of this article are (i) to derive theoretical properties of noninformative and informative priors as well as the resulting posteriors and (ii) to develop an efficient Markov chain Monte Carlo algorithm to sample from the resulting posterior distribution. A real data example from prostate cancer studies is used to illustrate the proposed methodologies.

[1]  J. Ibrahim,et al.  Prior elicitation, variable selection and Bayesian computation for logistic regression models , 1999 .

[2]  S. Chib,et al.  Analysis of multivariate probit models , 1998 .

[3]  J. Ibrahim,et al.  Using Historical Controls to Adjust for Covariates in Trend Tests for Binary Data , 1998 .

[4]  P. Diggle,et al.  Modelling multivariate binary data with alternating logistic regressions , 1993 .

[5]  G. C. Tiao,et al.  Bayesian inference in statistical analysis , 1973 .

[6]  B. Carlin,et al.  Bayesian Tobit Modeling of Longitudinal Ordinal Clinical Trial Compliance Data with Nonignorable Missingness , 1996 .

[7]  Ming-Hui Chen,et al.  Monte Carlo Estimation of Bayesian Credible and HPD Intervals , 1999 .

[8]  S. Chib,et al.  Bayesian Analysis of Multivariate Probit Models , 1996 .

[9]  Ming-Hui Chen,et al.  Existence of Bayesian Estimates for the Polychotomous Quantal Response Models , 1999 .

[10]  K Y Liang,et al.  Longitudinal data analysis for discrete and continuous outcomes. , 1986, Biometrics.

[11]  D. K. Dey,et al.  BAYESIAN MODELING OF CORRELATED BINARY RESPONSES VIA SCALE MIXTURE OF MULTIVARIATE NORMAL LINK FUNCTIONS , 1998 .

[12]  S. Zeger,et al.  Longitudinal data analysis using generalized linear models , 1986 .

[13]  M. Tan,et al.  Model diagnostics for marginal regression analysis of correlated binary data , 1997 .

[14]  P. McCullagh,et al.  Multivariate Logistic Models , 1995 .

[15]  Ming-Hui Chen,et al.  Reparameterizing the generalized linear model to accelerate gibbs sampler convergence , 1996 .

[16]  Bradley P. Carlin,et al.  Markov Chain Monte Carlo conver-gence diagnostics: a comparative review , 1996 .

[17]  R. Prentice,et al.  Correlated binary regression with covariates specific to each binary observation. , 1988, Biometrics.

[18]  John Geweke,et al.  Efficient Simulation from the Multivariate Normal and Student-t Distributions Subject to Linear Constraints and the Evaluation of Constraint Probabilities , 1991 .

[19]  M H Chen,et al.  Heritability estimates from human twin data by incorporating historical prior information. , 1998, Biometrics.

[20]  W. Gilks,et al.  Adaptive Rejection Sampling for Gibbs Sampling , 1992 .

[21]  S. Chib,et al.  Bayesian residual analysis for binary response regression models , 1995 .

[22]  S. Chib,et al.  Bayesian analysis of binary and polychotomous response data , 1993 .

[23]  Mary Kathryn Cowles,et al.  Accelerating Monte Carlo Markov chain convergence for cumulative-link generalized linear models , 1996, Stat. Comput..

[24]  P. Rousseeuw,et al.  The Shape of Correlation Matrices , 1994 .