Challenges and Opportunities of Near-Term Quantum Computing Systems

The concept of quantum computing has inspired a whole new generation of scientists, including physicists, engineers, and computer scientists, to fundamentally change the landscape of information technology. With experimental demonstrations stretching back more than two decades, the quantum computing community has achieved a major milestone over the past few years: the ability to build systems that are stretching the limits of what can be classically simulated, and which enable cloud-based research for a wide range of scientists, thus increasing the pool of talent exploring early quantum systems. While such noisy near-term quantum computing systems fall far short of the requirements for fault-tolerant systems, they provide unique test beds for exploring the opportunities for quantum applications. Here, we highlight an IBM-specific perspective of the facets associated with these systems, including quantum software, cloud access, benchmarking quantum systems, error correction and mitigation in such systems, understanding the complexity of quantum circuits, and how early quantum applications can run on near-term quantum computers.

[1]  Martin Schwarz,et al.  Preparing topological projected entangled pair states on a quantum computer , 2013 .

[2]  V.V. Shende,et al.  Synthesis of quantum-logic circuits , 2006, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[3]  L. DiCarlo,et al.  Fast reset and suppressing spontaneous emission of a superconducting qubit , 2010, 1003.0142.

[4]  Gian Giacomo Guerreschi,et al.  Two-step approach to scheduling quantum circuits , 2018, Quantum Science and Technology.

[5]  P. Coveney,et al.  Scalable Quantum Simulation of Molecular Energies , 2015, 1512.06860.

[6]  Alexander A. Razborov An upper bound on the threshold quantum decoherence rate , 2004, Quantum Inf. Comput..

[7]  J. Gambetta,et al.  Tapering off qubits to simulate fermionic Hamiltonians , 2017, 1701.08213.

[8]  J. Whitfield,et al.  Quantum Simulation of Helium Hydride Cation in a Solid-State Spin Register. , 2014, ACS nano.

[9]  Mark Howard,et al.  Simulation of quantum circuits by low-rank stabilizer decompositions , 2018, Quantum.

[10]  Unruh Maintaining coherence in quantum computers. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[11]  R. Schoelkopf,et al.  Superconducting Circuits for Quantum Information: An Outlook , 2013, Science.

[12]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[13]  Margaret Martonosi,et al.  Optimized Surface Code Communication in Superconducting Quantum Computers , 2017, 2017 50th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).

[14]  Moinuddin K. Qureshi,et al.  Not All Qubits Are Created Equal: A Case for Variability-Aware Policies for NISQ-Era Quantum Computers , 2018, ASPLOS.

[15]  J. McClean,et al.  Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz , 2017, Quantum Science and Technology.

[16]  Seth Lloyd,et al.  Quantum-inspired low-rank stochastic regression with logarithmic dependence on the dimension , 2018, ArXiv.

[17]  David P. DiVincenzo,et al.  Adaptive quantum computation, constant depth quantum circuits and arthur-merlin games , 2002, Quantum Inf. Comput..

[18]  Ewin Tang,et al.  A quantum-inspired classical algorithm for recommendation systems , 2018, Electron. Colloquium Comput. Complex..

[19]  Gavin E. Crooks,et al.  Fixed-Depth Two-Qubit Circuits and the Monodromy Polytope , 2019 .

[20]  Craig Gidney,et al.  How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits , 2019, Quantum.

[21]  Maika Takita,et al.  Demonstration of Weight-Four Parity Measurements in the Surface Code Architecture. , 2016, Physical review letters.

[22]  Pedram Khalili Amiri,et al.  Quantum computers , 2003 .

[23]  Ashley Montanaro,et al.  Average-case complexity versus approximate simulation of commuting quantum computations , 2015, Physical review letters.

[24]  F. Verstraete,et al.  Computational complexity of projected entangled pair states. , 2007, Physical review letters.

[25]  J. Gambetta,et al.  Procedure for systematically tuning up cross-talk in the cross-resonance gate , 2016, 1603.04821.

[26]  Rainer Blatt,et al.  Characterizing large-scale quantum computers via cycle benchmarking , 2019, Nature Communications.

[27]  Ashley Montanaro,et al.  Achieving quantum supremacy with sparse and noisy commuting quantum computations , 2016, 1610.01808.

[28]  J. Gambetta,et al.  Error mitigation extends the computational reach of a noisy quantum processor , 2018, Nature.

[29]  Robert König,et al.  Quantum advantage with shallow circuits , 2017, Science.

[30]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.

[31]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[32]  T. O'Brien,et al.  Low-cost error mitigation by symmetry verification , 2018, Physical Review A.

[33]  Kristan Temme,et al.  Supervised learning with quantum-enhanced feature spaces , 2018, Nature.

[34]  Fei Yan,et al.  A quantum engineer's guide to superconducting qubits , 2019, Applied Physics Reviews.

[35]  Archil Avaliani,et al.  Quantum Computers , 2004, ArXiv.

[36]  Ying Li,et al.  Efficient Variational Quantum Simulator Incorporating Active Error Minimization , 2016, 1611.09301.

[37]  Andrew M. Childs,et al.  Circuit Transformations for Quantum Architectures , 2019, TQC.

[38]  Ben Reichardt,et al.  Fault-Tolerant Quantum Computation , 2016, Encyclopedia of Algorithms.

[39]  L. Richardson The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, with an Application to the Stresses in a Masonry Dam , 1911 .

[40]  Andrew W. Cross,et al.  Demonstration of a quantum error detection code using a square lattice of four superconducting qubits , 2015, Nature Communications.

[41]  Dmitri Maslov,et al.  Quantum Circuit Placement , 2008, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[42]  J. Carter,et al.  Hybrid Quantum-Classical Hierarchy for Mitigation of Decoherence and Determination of Excited States , 2016, 1603.05681.

[43]  Travis S. Humble,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[44]  Jeremy Frank,et al.  Compiling quantum circuits to realistic hardware architectures using temporal planners , 2017, ArXiv.

[45]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[46]  Simon Benjamin,et al.  Error-Mitigated Digital Quantum Simulation. , 2018, Physical review letters.

[47]  Jochen Braumuller,et al.  Microwave Packaging for Superconducting Qubits , 2019, 2019 IEEE MTT-S International Microwave Symposium (IMS).

[48]  Tanja Lange,et al.  Post-quantum cryptography , 2008, Nature.

[49]  Raymond H. Putra,et al.  Optimization of Quantum Circuit Mapping using Gate Transformation and Commutation , 2019, Integr..

[50]  Sergio Boixo,et al.  Introduction to Quantum Algorithms for Physics and Chemistry , 2012, 1203.1331.

[51]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[52]  Chad Rigetti,et al.  Fully microwave-tunable universal gates in superconducting qubits with linear couplings and fixed transition frequencies , 2010 .

[53]  George A. Hernandez,et al.  Flexible superconducting Nb transmission lines on thin film polyimide for quantum computing applications , 2016, 1606.04557.

[54]  Timo O. Reiss,et al.  Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. , 2005, Journal of magnetic resonance.

[55]  Michael A. Nielsen,et al.  The Solovay-Kitaev algorithm , 2006, Quantum Inf. Comput..

[56]  Edoardo Charbon,et al.  Benefits and Challenges of Designing Cryogenic CMOS RF Circuits for Quantum Computers , 2019, 2019 IEEE International Symposium on Circuits and Systems (ISCAS).

[57]  Andrew W. Cross,et al.  Validating quantum computers using randomized model circuits , 2018, Physical Review A.

[58]  Adam Bouland,et al.  Complexity Classification of Conjugated Clifford Circuits , 2017, CCC.

[59]  J. Gambetta,et al.  Efficient Z gates for quantum computing , 2016, 1612.00858.

[60]  T. Monz,et al.  Quantum Chemistry Calculations on a Trapped-Ion Quantum Simulator , 2018, Physical Review X.

[61]  Dmitri Maslov,et al.  Basic circuit compilation techniques for an ion-trap quantum machine , 2016, ArXiv.

[62]  Nicolas Gisin,et al.  Quantum communication , 2017, 2017 Optical Fiber Communications Conference and Exhibition (OFC).

[63]  Dmitri Maslov,et al.  Polynomial-Time T-Depth Optimization of Clifford+T Circuits Via Matroid Partitioning , 2013, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[64]  Tzu-Ching Yen,et al.  Unitary partitioning approach to the measurement problem in the Variational Quantum Eigensolver method. , 2019, Journal of chemical theory and computation.

[65]  R. Schumann Quantum Information Theory , 2000, quant-ph/0010060.

[66]  Kathleen E. Hamilton,et al.  Generative model benchmarks for superconducting qubits , 2018, Physical Review A.

[67]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[68]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[69]  M. Yung,et al.  Quantum implementation of the unitary coupled cluster for simulating molecular electronic structure , 2015, 1506.00443.

[70]  S. Das Sarma,et al.  How to Enhance Dephasing Time in Superconducting Qubits , 2007, 0712.2225.

[71]  F. Reinhard,et al.  Quantum sensing , 2016, 1611.02427.

[72]  Robin Blume-Kohout,et al.  A volumetric framework for quantum computer benchmarks , 2019, Quantum.

[73]  Andris Ambainis,et al.  Forrelation: A Problem that Optimally Separates Quantum from Classical Computing , 2014, STOC.

[74]  Gerhard W. Dueck,et al.  Quantum Circuit Simplification and Level Compaction , 2006, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[75]  Dorit Aharonov,et al.  Fault-tolerant quantum computation with constant error , 1997, STOC '97.

[76]  Xiaobo Zhu,et al.  Experimental verification of five-qubit quantum error correction with superconducting qubits , 2019 .

[77]  E. Knill,et al.  DYNAMICAL DECOUPLING OF OPEN QUANTUM SYSTEMS , 1998, quant-ph/9809071.

[78]  Dorit Aharonov,et al.  Fault-tolerant Quantum Computation with Constant Error Rate * , 1999 .

[79]  Caroline Figgatt,et al.  Fault-tolerant quantum error detection , 2016, Science Advances.

[80]  Ying Li,et al.  Quantum computation with universal error mitigation on a superconducting quantum processor , 2018, Science Advances.

[81]  Martin Rötteler,et al.  Efficient synthesis of universal Repeat-Until-Success circuits , 2014, Physical review letters.

[82]  Andrew W. Cross,et al.  Experimental Demonstration of Fault-Tolerant State Preparation with Superconducting Qubits. , 2017, Physical review letters.

[83]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[84]  Matthias Christandl,et al.  Quantum Circuits for Isometries , 2015, 1501.06911.

[85]  Aleks Kissinger,et al.  Graph-theoretic Simplification of Quantum Circuits with the ZX-calculus , 2019, Quantum.

[86]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[87]  Margaret Martonosi,et al.  $O(N^3)$ Measurement Cost for Variational Quantum Eigensolver on Molecular Hamiltonians , 2019, IEEE Transactions on Quantum Engineering.

[88]  Hideharu Amano,et al.  Extracting Success from IBM’s 20-Qubit Machines Using Error-Aware Compilation , 2019, ACM J. Emerg. Technol. Comput. Syst..

[89]  Yao Lu,et al.  Error-mitigated quantum gates exceeding physical fidelities in a trapped-ion system , 2019, Nature Communications.

[90]  Joel J. Wallman,et al.  Noise tailoring for scalable quantum computation via randomized compiling , 2015, 1512.01098.

[91]  Neil J. Ross,et al.  Optimal ancilla-free Clifford+T approximation of z-rotations , 2014, Quantum Inf. Comput..

[92]  Maria Schuld,et al.  Quantum Machine Learning in Feature Hilbert Spaces. , 2018, Physical review letters.

[93]  Matthias Troyer,et al.  ProjectQ: An Open Source Software Framework for Quantum Computing , 2016, ArXiv.

[94]  Kristan Temme,et al.  Error Mitigation for Short-Depth Quantum Circuits. , 2016, Physical review letters.

[95]  G. Wendin Quantum information processing with superconducting circuits: a review , 2016, Reports on progress in physics. Physical Society.

[96]  D. Abraham,et al.  Predicting substrate resonance mode frequency shifts using conductive, through-substrate vias , 2016 .

[97]  Christof Zalka Simulating quantum systems on a quantum computer , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[98]  Sarah Sheldon,et al.  Three-Qubit Randomized Benchmarking. , 2017, Physical review letters.

[99]  Colin P. Williams,et al.  Optimal quantum circuits for general two-qubit gates (5 pages) , 2003, quant-ph/0308006.

[100]  Fernando Magno Quintão Pereira,et al.  Qubit allocation , 2018, CGO.

[101]  Martin Rötteler,et al.  Verified Compilation of Space-Efficient Reversible Circuits , 2016, CAV.

[102]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[103]  Frederic T. Chong,et al.  CertiQ: A Mostly-automated Verification of a Realistic Quantum Compiler , 2019 .

[104]  John Watrous,et al.  Quantum Computational Complexity , 2008, Encyclopedia of Complexity and Systems Science.

[105]  Michael Cubeddu,et al.  Qubit Allocation for Noisy Intermediate-Scale Quantum Computers , 2018 .

[106]  B. Terhal Quantum error correction for quantum memories , 2013, 1302.3428.

[107]  Andrew W. Cross,et al.  Open Quantum Assembly Language , 2017, 1707.03429.

[108]  Frederic T. Chong,et al.  Contract-based verification of a realistic quantum compiler , 2019, ArXiv.

[109]  Michele Mosca,et al.  On the controlled-NOT complexity of controlled-NOT–phase circuits , 2018, Quantum Science and Technology.

[110]  Andrew W. Cross,et al.  Topological and Subsystem Codes on Low-Degree Graphs with Flag Qubits , 2019, Physical Review X.

[111]  J. Gambetta,et al.  Investigating Surface Loss Effects in Superconducting Transmon Qubits , 2016, IEEE Transactions on Applied Superconductivity.

[112]  Scott Aaronson,et al.  Improved Simulation of Stabilizer Circuits , 2004, ArXiv.

[113]  Daniel Litinski,et al.  A Game of Surface Codes: Large-Scale Quantum Computing with Lattice Surgery , 2018, Quantum.

[114]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[115]  B. Terhal,et al.  Roads towards fault-tolerant universal quantum computation , 2016, Nature.

[116]  M. Bremner,et al.  Instantaneous Quantum Computation , 2008, 0809.0847.

[117]  David Gosset,et al.  Improved Classical Simulation of Quantum Circuits Dominated by Clifford Gates. , 2016, Physical review letters.

[118]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[119]  Margaret Martonosi,et al.  Full-Stack, Real-System Quantum Computer Studies: Architectural Comparisons and Design Insights , 2019, 2019 ACM/IEEE 46th Annual International Symposium on Computer Architecture (ISCA).

[120]  Joseph Emerson,et al.  Scalable and robust randomized benchmarking of quantum processes. , 2010, Physical review letters.

[121]  A. Wallraff,et al.  Engineering cryogenic setups for 100-qubit scale superconducting circuit systems , 2018, EPJ Quantum Technology.

[122]  Jay M. Gambetta,et al.  Building logical qubits in a superconducting quantum computing system , 2015, 1510.04375.

[123]  Henry Hoffmann,et al.  Optimized Compilation of Aggregated Instructions for Realistic Quantum Computers , 2019, ASPLOS.

[124]  Thomas Alexander,et al.  Qiskit Backend Specifications for OpenQASM and OpenPulse Experiments , 2018, ArXiv.

[125]  L. Landau Fault-tolerant quantum computation by anyons , 2003 .

[126]  Dmitri Maslov,et al.  Automated optimization of large quantum circuits with continuous parameters , 2017, npj Quantum Information.

[127]  Frederic T. Chong,et al.  Scheduling physical operations in a quantum information processor , 2006, SPIE Defense + Commercial Sensing.

[128]  G. S. Paraoanu,et al.  Microwave-induced coupling of superconducting qubits , 2006, 0801.4541.

[129]  Earl T. Campbell,et al.  Quantum computation with realistic magic-state factories , 2016, 1605.07197.

[130]  M. Mosca,et al.  A Meet-in-the-Middle Algorithm for Fast Synthesis of Depth-Optimal Quantum Circuits , 2012, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[131]  L. Richardson,et al.  On the Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, with an Application to the Stresses in a Masonry Dam , 1910 .

[132]  Jonathan Carter,et al.  Computation of Molecular Spectra on a Quantum Processor with an Error-Resilient Algorithm , 2018 .

[133]  Margaret Martonosi,et al.  Noise-Adaptive Compiler Mappings for Noisy Intermediate-Scale Quantum Computers , 2019, ASPLOS.

[134]  Robert Wille,et al.  Compiling SU(4) quantum circuits to IBM QX architectures , 2018, ASP-DAC.

[135]  D. Rosenberg,et al.  3D integration and packaging for solid-state qubits , 2019, 1906.11146.

[136]  Margaret Martonosi,et al.  ScaffCC: a framework for compilation and analysis of quantum computing programs , 2014, Conf. Computing Frontiers.