Multi-scale anisotropic heat diffusion based on normal-driven shape representation

Multi-scale geometric processing has been a popular and powerful tool in graphics, which typically employs isotropic diffusion across scales. This paper proposes a novel method of multi-scale anisotropic heat diffusion on manifold, based on the new normal-driven shape representation and Edge-weighted Heat Kernels (EHK). The new shape representation, named as Normal-Controlled Coordinates (NCC), can encode local geometric details of a vertex along its normal direction and rapidly reconstruct surface geometry. Moreover, the inner product of NCC and its corresponding vertex normal, called Normal Signature (NS), defines a scalar/heat field over curved surface. The anisotropic heat diffusion is conducted using the weighted heat kernel convolution governed by local geometry. The convolution is computed iteratively based on the semigroup property of heat kernels toward accelerated performance. This diffusion is an efficient multi-scale procedure that rigorously conserves the total heat. We apply our new method to multi-scale feature detection, scalar field smoothing and mesh denoising, and hierarchical shape decomposition. We conduct various experiments to demonstrate the effectiveness of our method. Our method can be generalized to handle any scalar field defined over manifold.

[1]  Hong Qin,et al.  Efficient Computation of Scale-Space Features for Deformable Shape Correspondences , 2010, ECCV.

[2]  Mohamed Daoudi,et al.  Topology driven 3D mesh hierarchical segmentation , 2007, IEEE International Conference on Shape Modeling and Applications 2007 (SMI '07).

[3]  Daniel Cohen-Or,et al.  Bilateral mesh denoising , 2003 .

[4]  Shuangshuang Jin,et al.  A comparison of algorithms for vertex normal computation , 2005, The Visual Computer.

[5]  Marc Alexa,et al.  Differential coordinates for local mesh morphing and deformation , 2003, The Visual Computer.

[6]  Christian Rössl,et al.  Differential coordinates for interactive mesh editing , 2004, Proceedings Shape Modeling Applications, 2004..

[7]  Hong Qin,et al.  Geodesic Distance-weighted Shape Vector Image Diffusion , 2008, IEEE Transactions on Visualization and Computer Graphics.

[8]  Mark Meyer,et al.  Anisotropic Feature-Preserving Denoising of Height Fields and Bivariate Data , 2000, Graphics Interface.

[9]  Leonidas J. Guibas,et al.  Shape google: Geometric words and expressions for invariant shape retrieval , 2011, TOGS.

[10]  Konrad Polthier,et al.  Anisotropic Filtering of Non‐Linear Surface Features , 2004, Comput. Graph. Forum.

[11]  Junjie Cao,et al.  Mesh denoising based on differential coordinates , 2009, 2009 IEEE International Conference on Shape Modeling and Applications.

[12]  Robert Tibshirani,et al.  Discriminant Adaptive Nearest Neighbor Classification , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Leonidas J. Guibas,et al.  One Point Isometric Matching with the Heat Kernel , 2010, Comput. Graph. Forum.

[14]  D. Levin,et al.  Linear rotation-invariant coordinates for meshes , 2005, SIGGRAPH 2005.

[15]  Hans-Peter Seidel,et al.  MovieReshape: tracking and reshaping of humans in videos , 2010, SIGGRAPH 2010.

[16]  J. Warren,et al.  Mean value coordinates for closed triangular meshes , 2005, SIGGRAPH 2005.

[17]  Rasmus Larsen,et al.  Shape Analysis Using the Auto Diffusion Function , 2009 .

[18]  Norden E. Huang,et al.  A review on Hilbert‐Huang transform: Method and its applications to geophysical studies , 2008 .

[19]  Mark Meyer,et al.  Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.

[20]  Niklas Peinecke,et al.  Laplace-Beltrami spectra as 'Shape-DNA' of surfaces and solids , 2006, Comput. Aided Des..

[21]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .

[22]  Frédo Durand,et al.  Non-iterative, feature-preserving mesh smoothing , 2003, ACM Trans. Graph..

[23]  A. Grigor’yan Escape rate of brownian motion on riemanian manifolds , 1998 .

[24]  Craig Gotsman,et al.  A multi-resolution approach to heat kernels on discrete surfaces , 2010, ACM Trans. Graph..

[25]  Martin Rumpf,et al.  Anisotropic geometric diffusion in surface processing , 2000 .

[26]  Facundo Mémoli,et al.  Spectral Gromov-Wasserstein distances for shape matching , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[27]  Mark Meyer,et al.  Implicit fairing of irregular meshes using diffusion and curvature flow , 1999, SIGGRAPH.

[28]  N. Huang,et al.  The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[29]  Moo K. Chung,et al.  Heat Kernel Smoothing Using Laplace-Beltrami Eigenfunctions , 2010, MICCAI.

[30]  Hugues Hoppe,et al.  Progressive meshes , 1996, SIGGRAPH.

[31]  Jing Hua,et al.  Intrinsic Geometric Scale Space by Shape Diffusion , 2009, IEEE Transactions on Visualization and Computer Graphics.

[32]  David W. Jacobs,et al.  Mesh saliency , 2005, SIGGRAPH 2005.

[33]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[34]  Giuseppe Patanè,et al.  Multi-scale Feature Spaces for Shape Processing and Analysis , 2010, 2010 Shape Modeling International Conference.

[35]  R. Horaud,et al.  Surface feature detection and description with applications to mesh matching , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[36]  Alla Sheffer,et al.  Pyramid coordinates for morphing and deformation , 2004, Proceedings. 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004..