The Transcriptional Specificity of NF-κB Dimers Is Coded within the κB DNA Response Elements

[1]  T. Kodama,et al.  Osteoprotection by semaphorin 3A , 2012, Nature.

[2]  G. Ghosh,et al.  NF‐κB regulation: lessons from structures , 2012, Immunological reviews.

[3]  J. Ragoussis,et al.  Principles of dimer-specific gene regulation revealed by a comprehensive characterization of NF-κB family DNA binding , 2011, Nature Immunology.

[4]  A. Hoffmann,et al.  The Specificity of Innate Immune Responses Is Enforced by Repression of Interferon Response Elements by NF-κB p50 , 2011, Science Signaling.

[5]  I. Andricioaei,et al.  Transient Hoogsteen Base Pairs in Canonical Duplex DNA , 2011, Nature.

[6]  Leor S Weinberger,et al.  Lentiviral vectors to study stochastic noise in gene expression. , 2011, Methods in enzymology.

[7]  Hee June Choi,et al.  Bcl3-dependent stabilization of CtBP1 is crucial for the inhibition of apoptosis and tumor progression in breast cancer. , 2010, Biochemical and biophysical research communications.

[8]  R. Mann,et al.  Dissecting the functional specificities of two Hox proteins. , 2010, Genes & development.

[9]  P. Viatour,et al.  The Repressing Function of the Oncoprotein BCL-3 Requires CtBP, while Its Polyubiquitination and Degradation Involve the E3 Ligase TBLR1 , 2010, Molecular and Cellular Biology.

[10]  B. Honig,et al.  Diversity in DNA recognition by p53 revealed by crystal structures with Hoogsteen base pairs , 2010, Nature Structural &Molecular Biology.

[11]  H. Rozenberg,et al.  Diversity in DNA recognition by p53 revealed by crystal structures with Hoogsteen base pairs (p53-DNA complex 3) , 2010 .

[12]  Guido Tiana,et al.  Noncooperative interactions between transcription factors and clustered DNA binding sites enable graded transcriptional responses to environmental inputs. , 2010, Molecular cell.

[13]  F. Zhan,et al.  High expression of BCL3 in human myeloma cells is associated with increased proliferation and inferior prognosis , 2009, European journal of haematology.

[14]  K. Yamamoto,et al.  DNA Binding Site Sequence Directs Glucocorticoid Receptor Structure and Activity , 2009, Science.

[15]  C. Glass,et al.  Cooperative NCoR/SMRT interactions establish a corepressor-based strategy for integration of inflammatory and anti-inflammatory signaling pathways. , 2009, Genes & development.

[16]  D. Baltimore,et al.  The stability of mRNA influences the temporal order of the induction of genes encoding inflammatory molecules , 2009, Nature Immunology.

[17]  J. Maher Faculty Opinions recommendation of Molecular dynamics of a kappaB DNA element: base flipping via cross-strand intercalative stacking in a microsecond-scale simulation. , 2008 .

[18]  J. Mccammon,et al.  Molecular dynamics of a κB DNA element: base flipping via cross-strand intercalative stacking in a microsecond-scale simulation , 2008, Nucleic acids research.

[19]  P. Chilton,et al.  Impaired Bcl3 Up-regulation Leads to Enhanced Lipopolysaccharide-induced Interleukin (IL)-23P19 Gene Expression in IL-10–/– Mice* , 2008, Journal of Biological Chemistry.

[20]  G. Ghosh,et al.  X-ray structure of a NF-kappaB p50/RelB/DNA complex reveals assembly of multiple dimers on tandem kappaB sites. , 2007, Journal of molecular biology.

[21]  Hong-shan Wang,et al.  A role for the IkappaB family member Bcl-3 in the control of central immunologic tolerance. , 2007, Immunity.

[22]  A. Hoffmann,et al.  Transcriptional regulation via the NF-κB signaling module , 2006, Oncogene.

[23]  F. Giancotti,et al.  Faculty Opinions recommendation of Cyld inhibits tumor cell proliferation by blocking Bcl-3-dependent NF-kappaB signaling. , 2006 .

[24]  Ramin Massoumi,et al.  Cyld Inhibits Tumor Cell Proliferation by Blocking Bcl-3-Dependent NF-κB Signaling , 2006, Cell.

[25]  I. Adcock,et al.  NF-κB and Activator Protein 1 Response Elements and the Role of Histone Modifications in IL-1β-Induced TGF-β1 Gene Transcription1 , 2006, The Journal of Immunology.

[26]  A. Hoffmann,et al.  Transcriptional regulation via the NF-kappaB signaling module. , 2006, Oncogene.

[27]  I. Adcock,et al.  NF-kappaB and activator protein 1 response elements and the role of histone modifications in IL-1beta-induced TGF-beta1 gene transcription. , 2006, Journal of immunology.

[28]  A. Hoffmann,et al.  Molecular Determinants of Crosstalk between Nuclear Receptors and Toll-like Receptors , 2005, Cell.

[29]  Gioacchino Natoli,et al.  Interactions of NF-κB with chromatin: the art of being at the right place at the right time , 2005, Nature Immunology.

[30]  H. Young,et al.  BCL-3 and NF-κB p50 Attenuate Lipopolysaccharide-induced Inflammatory Responses in Macrophages* , 2004, Journal of Biological Chemistry.

[31]  David Baltimore,et al.  One Nucleotide in a κB Site Can Determine Cofactor Specificity for NF-κB Dimers , 2004, Cell.

[32]  S. Akira,et al.  Regulation of Toll/IL-1-receptor-mediated gene expression by the inducible nuclear protein IκBζ , 2004, Nature.

[33]  C. Glass,et al.  PE-1/METS, an Antiproliferative Ets Repressor Factor, Is Induced by CREB-1/CREM-1 during Macrophage Differentiation* , 2004, Journal of Biological Chemistry.

[34]  A. Hoffmann,et al.  One nucleotide in a kappaB site can determine cofactor specificity for NF-kappaB dimers. , 2004, Cell.

[35]  S. Akira,et al.  Regulation of Toll/IL-1-receptor-mediated gene expression by the inducible nuclear protein IkappaBzeta. , 2004, Nature.

[36]  David Baltimore,et al.  Genetic analysis of NF‐κB/Rel transcription factors defines functional specificities , 2003, The EMBO journal.

[37]  N. Perkins,et al.  p53 Represses Cyclin D1 Transcription through Down Regulation of Bcl-3 and Inducing Increased Association of the p52 NF-κB Subunit with Histone Deacetylase 1 , 2003, Molecular and Cellular Biology.

[38]  S. Saccani,et al.  Modulation of NF-κB Activity by Exchange of Dimers , 2003 .

[39]  S. Saccani,et al.  Modulation of NF-kappaB activity by exchange of dimers. , 2003, Molecular cell.

[40]  Christopher K. Glass,et al.  Exchange of N-CoR Corepressor and Tip60 Coactivator Complexes Links Gene Expression by NF-κB and β-Amyloid Precursor Protein , 2002, Cell.

[41]  G. Ghosh,et al.  The κB DNA Sequence from the HIV Long Terminal Repeat Functions as an Allosteric Regulator of HIV Transcription* , 2002, The Journal of Biological Chemistry.

[42]  C. Glass,et al.  Exchange of N-CoR corepressor and Tip60 coactivator complexes links gene expression by NF-kappaB and beta-amyloid precursor protein. , 2002, Cell.

[43]  S. Westerheide,et al.  The Putative Oncoprotein Bcl-3 Induces Cyclin D1 To Stimulate G1 Transition , 2001, Molecular and Cellular Biology.

[44]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[45]  A. Brasier,et al.  NF-κB-inducible BCL-3 Expression Is an Autoregulatory Loop Controlling Nuclear p50/NF-κB1 Residence* , 2001, The Journal of Biological Chemistry.

[46]  A. Brasier,et al.  NF-kappa B-inducible BCL-3 expression is an autoregulatory loop controlling nuclear p50/NF-kappa B1 residence. , 2001, The Journal of biological chemistry.

[47]  G. Ghosh,et al.  NF-κB p65 (RelA) homodimer uses distinct mechanisms to recognize DNA targets , 2000 .

[48]  G. Ghosh,et al.  NF-kappaB p65 (RelA) homodimer uses distinct mechanisms to recognize DNA targets. , 2000, Structure.

[49]  Chris Albanese,et al.  NF-κB Controls Cell Growth and Differentiation through Transcriptional Regulation of Cyclin D1 , 1999, Molecular and Cellular Biology.

[50]  C. Scheidereit,et al.  The Bcl-3 oncoprotein acts as a bridging factor between NF-κB/Rel and nuclear co-regulators , 1999, Oncogene.

[51]  J. Anastasi,et al.  Lymphadenopathy, splenomegaly, and altered immunoglobulin production in BCL3 transgenic mice , 1998, Oncogene.

[52]  Gregory L. Verdine,et al.  Structure of the human NF‐κB p52 homodimer‐DNA complex at 2.1 Å resolution , 1997 .

[53]  G L Verdine,et al.  Structure of the human NF-kappaB p52 homodimer-DNA complex at 2.1 A resolution. , 1997, The EMBO journal.

[54]  Junliang Pan,et al.  Regulation of the Human P-selectin Promoter by Bcl-3 and Specific Homodimeric Members of the NF-κB/Rel Family (*) , 1995, The Journal of Biological Chemistry.

[55]  S. Harrison,et al.  Structure of the NF-kappa B p50 homodimer bound to DNA. , 1995, Nature.

[56]  G. Nolan,et al.  The candidate proto-oncogene bcl-3 encodes a transcriptional coactivator that activates through NF-kappa B p50 homodimers. , 1993, Genes & development.

[57]  G. Nolan,et al.  The bcl-3 proto-oncogene encodes a nuclear I kappa B-like molecule that preferentially interacts with NF-kappa B p50 and p52 in a phosphorylation-dependent manner , 1993, Molecular and cellular biology.

[58]  V. Bours,et al.  The oncoprotein Bcl-3 directly transactivates through κB motifs via association with DNA-binding p50B homodimers , 1993, Cell.