Pin-fin heat transfer - Contribution of the wall and the pin to the overall heat transfer

The differences in the heat transfer coefficient between the pin and the wall in pin-fin heat transfer was determined for three pin length to diameter ratios. A staggered pin-fin array was used with a 50% duct flow blockage by the pins. The axial pitch-to-pin diameter ratio, X/D, was 1.5 and the transverse pitch-to-diameter ratio, S/D, was 2.0. Three pin length-to-diameter ratios, T/D, of 0.7. 1.0 and 2.2 were investigated. The mean heat transfer coefficient results were very similar to previous work for similar geometries. The axial variation of heat transfer coefficient showed this to be fairly uniform with a small peak at the fourth row. Around each pin four measurements of the heat transfer coefficients were made with four on the fin surface at each end. Thus 12 local heat transfer coefficients were made per pin-fin. These showed that for all three geometries the wall or fin heat transfer was always greater by 15–35% than the pin for the same velocity and Re.Copyright © 1992 by ASME