Progress in multi-conjugate adaptive optics at Big Bear Solar Observatory

The multi-conjugate adaptive optics (MCAO) system for solar observations at the 1.6-meter clear aperture New Solar Telescope (NST) of the Big Bear Solar Observatory (BBSO) in Big Bear Lake, California, enables us to study fundamental design questions in solar MCAO experimentally. It is the pathfinder for MCAO of the upcoming Daniel K. Inoyue Solar Telescope (DKIST). This system is very flexible and offers various optical configurations such as different sequencings of deformable mirrors (DMs) and wavefront sensors (WFS), which are hard to simulate conclusively. We show preliminary results and summarize the design, and 2016 updates to the MCAO system. The system utilizes three DMs. One of which is conjugate to the telescope pupil, and the other two to distinct higher altitudes. The pupil DM can be either placed into a pupil image up- or downstream of the high-altitude DMs. The high-altitude DMs can be separately and quickly conjugated to various altitudes between 2 and 8 km. Three Shack-Hartmann WFS units are available, one for low-order, multi-directional sensing and two high-order on-axis sensing.

[1]  Steve Hegwer,et al.  Progress with solar multi-conjugate adaptive optics at NSO , 2006, SPIE Astronomical Telescopes + Instrumentation.

[2]  Thomas Berkefeld,et al.  The 2012 status of the MCAO testbed for the GREGOR solar telescope , 2012, Other Conferences.

[3]  Steve Hegwer,et al.  Solar multiconjugate adaptive optics at the Dunn Solar Telescope: preliminary results , 2004, SPIE Astronomical Telescopes + Instrumentation.

[4]  Philip R. Goode,et al.  Optical design of the Big Bear Solar Observatory's multi-conjugate adaptive optics system , 2014, Astronomical Telescopes and Instrumentation.

[5]  M. Collados Vera,et al.  Adaptive optics and MCAO for the 4-m European Solar Telescope EST , 2010, Astronomical Telescopes + Instrumentation.

[6]  Thomas Berkefeld,et al.  Results of the multi-conjugate adaptive optics system at the German solar telescope, Tenerife , 2005, SPIE Optics + Photonics.

[7]  J. Hardy,et al.  Adaptive Optics for Astronomical Telescopes , 1998 .

[8]  Oskar von der Lühe Photometric stability of multiconjugate adaptive optics , 2004 .

[9]  Francois Rigaut,et al.  Principles, limitations, and performance of multiconjugate adaptive optics , 2000, Astronomical Telescopes and Instrumentation.

[10]  Kevin Reardon,et al.  Speckle interferometry with adaptive optics corrected solar data , 2008 .

[11]  Friedrich Wöger,et al.  Effect of anisoplanatism on the measurement accuracy of an extended-source Hartmann-Shack wavefront sensor. , 2009, Applied optics.

[12]  O. von der Lühe,et al.  Estimating Fried’s parameter from a time series of an arbitrary resolved object imaged through atmospheric turbulence , 1984 .

[13]  R C Flicker Sequence of phase correction in multiconjugate adaptive optics. , 2001, Optics letters.

[14]  Friedrich Wöger,et al.  Adaptive optics and multi-conjugate adaptive optics with the VTT , 2002 .

[15]  M. Cagigal,et al.  Generalized Fried parameter after adaptive optics partial wave-front compensation , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[16]  Thomas Berkefeld,et al.  GREGOR MCAO looking at the Sun , 2014, Astronomical Telescopes and Instrumentation.

[17]  Benoit Neichel,et al.  Cn2 and wind profiler method to quantify the frozen flow decay using wide-field laser guide stars adaptive optics , 2014 .

[18]  Iciar Montilla,et al.  MCAO numerical simulations for EST: analysis and parameter optimization , 2015 .

[19]  Thomas Berkefeld,et al.  Multi-conjugate Adaptive Optics at Big Bear Solar Observatory , 2015 .

[20]  Charles P. Cavedoni,et al.  Gemini multiconjugate adaptive optics system review - I. Design, trade-offs and integration , 2013, 1310.6199.

[21]  Thomas Rimmele,et al.  The multi-conjugate adaptive optics system of the New Solar Telescope at Big Bear Solar Observatory , 2014, Astronomical Telescopes and Instrumentation.