Predictive Control for Polynomial Systems Subject to State and Input Constraints

Abstract We present a nonlinear model predictive control (NMPC) approach to design optimal feedback controllers for the class of continuous-time input affine polynomial systems subject to state and input constraints. The corresponding feedback law is obtained via the solution of an efficient to solve convex optimization problem subject to sum of squares (SOS) constraints. To serve the conflicting requirements of performance and computational costs in various applications, the approach comes in three different control schemes which differ in how many times the (updated) optimization problem has to be solved, and whether this is done on- or offline. Each of the proposed control schemes minimizes an upper bound on the cost functional while guaranteeing closed-loop stability and satisfaction of input and state constraints. Finally, simulations of an example system show the applicability and the effectiveness of the proposed controllers. Zusammenfassung Wir präsentieren einen rückführungsbasierten Ansatz zur Nichtlinearen Modelprädiktiven Regelung zeitkontinuierlicher, eingangsaffiner Polynomialsysteme unter Zustands- und Eingangsbeschränkungen. Das zugehörige Rückführgesetz wird durch die Lösung eines effizient zu lösenden konvexen Optimierungsproblem bestimmt, dessen Nebenbedingungen mit Hilfe der Summe-von-Quadraten Methode hergeleitet werden. Um den widersprüchlichen Anforderungen von Regelgüte und Rechenaufwand in verschiedenen Anwendungen Rechnung zu tragen, erlaubt der Ansatz drei verschiedene Regelstrategien, welche sich darin unterscheiden, wie oft das (aktualisierte) Optimierungsproblem gelöst werden muss, und ob dies on- oder offline geschieht. Jede der vorgeschlagenen Regelstrategien minimiert eine obere Grenze eines Kostenfunktionals und garantiert gleichzeitig sowohl die Stabilität des geschlossenen Kreises als auch die Einhaltung der Zustands- und Eingangsbeschränkungen. Schließlich, wird in Simulation anhand eines Beispielsystems die Anwendbarkeit und Effektivität der vorgeschlagenen Regler veranschaulicht.

[1]  Yugeng Xi,et al.  Improving off-line approach to robust MPC based-on nominal performance cost , 2007, Autom..

[2]  Frank Allgöwer,et al.  Predictive control for polynomial systems subject to constraints using sum of squares , 2010, 49th IEEE Conference on Decision and Control (CDC).

[3]  J. Lasserre Moments, Positive Polynomials And Their Applications , 2009 .

[4]  Pablo A. Parrilo,et al.  Introducing SOSTOOLS: a general purpose sum of squares programming solver , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[5]  Kazuo Tanaka,et al.  Guaranteed cost control of polynomial fuzzy systems via a sum of squares approach , 2007, CDC.

[6]  Edoardo Mosca,et al.  An ellipsoidal off-line MPC scheme for uncertain polytopic discrete-time systems , 2008, Autom..

[7]  Frank Allgöwer,et al.  ROBUST CONTROL OF CONSTRAINED SECTOR BOUNDED LUR ’ E SYSTEMS WITH APPLICATIONS TO NONLINEAR MODEL PREDICTIVE CONTROL , 2010 .

[8]  F. Fontes A General Framework to Design Stabilizing Nonlinear Model Predictive Controllers , 2001 .

[9]  Antonis Papachristodoulou,et al.  Robust Stability Analysis of Nonlinear Hybrid Systems , 2009, IEEE Transactions on Automatic Control.

[10]  G. Chesi,et al.  LMI Techniques for Optimization Over Polynomials in Control: A Survey , 2010, IEEE Transactions on Automatic Control.

[11]  Hiroyuki Ichihara Optimal Control for Polynomial Systems Using Matrix Sum of Squares Relaxations , 2009, IEEE Transactions on Automatic Control.

[12]  Kim-Chuan Toh,et al.  Solving semidefinite-quadratic-linear programs using SDPT3 , 2003, Math. Program..

[13]  F. Allgöwer,et al.  A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability , 1997 .

[14]  Mayuresh V. Kothare,et al.  An e!cient o"-line formulation of robust model predictive control using linear matrix inequalities (cid:1) , 2003 .

[15]  Frank Allgöwer,et al.  Offline NMPC for continuous-time systems using sum of squares , 2011, Proceedings of the 2011 American Control Conference.

[16]  Manfred Morari,et al.  Robust constrained model predictive control using linear matrix inequalities , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[17]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[18]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[19]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[20]  Jürgen Adamy,et al.  Entwurf sättigender Regler für polynomiale Systeme mit StellgrößenbeschränkungDesign of Saturating Controllers for Polynomial Systems with Input Constraints , 2010, Autom..

[21]  Carsten W. Scherer,et al.  Matrix Sum-of-Squares Relaxations for Robust Semi-Definite Programs , 2006, Math. Program..

[22]  A. Papachristodoulou,et al.  Nonlinear control synthesis by sum of squares optimization: a Lyapunov-based approach , 2004, 2004 5th Asian Control Conference (IEEE Cat. No.04EX904).

[23]  M. Kojima Sums of Squares Relaxations of Polynomial Semidefinite Programs , 2003 .

[24]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[25]  Hiroyuki Ichihara,et al.  State feedback synthesis for polynomial systems with bounded disturbances , 2008, 2008 47th IEEE Conference on Decision and Control.

[26]  P. Olver Nonlinear Systems , 2013 .

[27]  P. Parrilo Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization , 2000 .

[28]  Pablo A. Parrilo,et al.  Nonlinear control synthesis by convex optimization , 2004, IEEE Transactions on Automatic Control.