Scale-free network theory in studying the structure of the road network in Poland

This paper discusses the issue of statistical analysis of traffic flow in different regions of Poland. Such analysis allows us to identify “valuable (sensitive) areas” whose damage or blockage may provoke considerable disturbances or even a stoppage of traffic flow in the examined road network. The results of the studies indicate that the road network in Poland has the properties of a scale-free network. The distribution of the examined variables does not have a normal character, whereas the relationship between the number of nodes and the number of connections is a power-law feature.

[1]  T. Lewis Critical Infrastructure Protection in Homeland Security: Defending a Networked Nation , 2006 .

[2]  D. Stauffer,et al.  Ferromagnetic phase transition in Barabási–Albert networks , 2001, cond-mat/0112312.

[3]  E. Gutiérrez,et al.  A network-based analysis of the impact of structural damage on urban accessibility following a disaster: the case of the seismically damaged Port Au Prince and Carrefour urban road networks , 2011 .

[4]  Fahui Wang,et al.  Exploring the network structure and nodal centrality of China , 2011 .

[5]  S. Havlin,et al.  Breakdown of the internet under intentional attack. , 2000, Physical review letters.

[6]  T. Aste,et al.  Interplay between topology and dynamics in the World Trade Web , 2007 .

[7]  J. Hudson A DIAMOND ANNIVERSARY , 1979 .

[8]  A. Barabasi,et al.  Evolution of the social network of scientific collaborations , 2001, cond-mat/0104162.

[9]  D. Garlaschelli,et al.  Structure and evolution of the world trade network , 2005, physics/0502066.

[10]  Bin Jiang,et al.  Street hierarchies: a minority of streets account for a majority of traffic flow , 2008, Int. J. Geogr. Inf. Sci..

[11]  D. Watts,et al.  Small Worlds: The Dynamics of Networks between Order and Randomness , 2001 .

[12]  A. Clauset,et al.  Scale invariance in road networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  S. Redner How popular is your paper? An empirical study of the citation distribution , 1998, cond-mat/9804163.

[14]  Albert-László Barabási,et al.  Internet: Diameter of the World-Wide Web , 1999, Nature.

[15]  Robin R. Vallacher,et al.  Dynamical Systems in Social Psychology , 1994 .

[16]  Zhilin Li,et al.  Fractality and Self-Similarity in the Structure of Road Networks , 2012 .

[17]  Daniel Delling,et al.  Round-Based Public Transit Routing , 2015 .

[18]  K Kocur-Bera Geoinformacja w zarządzaniu siecią transportową - część II , 2010 .

[19]  B. Latané The psychology of social impact. , 1981 .

[20]  J. Hołyst,et al.  Statistical analysis of 22 public transport networks in Poland. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  Mark E. J. Newman,et al.  Power-Law Distributions in Empirical Data , 2007, SIAM Rev..

[22]  Valdis E. Krebs,et al.  Mapping Networks of Terrorist Cells , 2001 .

[23]  Diego Garlaschelli,et al.  Fitness-dependent topological properties of the world trade web. , 2004, Physical review letters.

[24]  Cohen,et al.  Resilience of the internet to random breakdowns , 2000, Physical review letters.

[25]  B. Erickson Secret Societies and Social Structure , 1981 .

[26]  S. Porta,et al.  Street centrality and land use intensity in Baton Rouge, Louisiana , 2011 .