From Canards of Folded Singularities to Torus Canards in a Forced van der Pol Equation
暂无分享,去创建一个
M. Krupa | T. Kaper | M. Desroches | J. Burke | Theodore Vo | A. Granados
[1] Jonathan E. Rubin,et al. Averaging, Folded Singularities, and Torus Canards: Explaining Transitions between Bursting and Spiking in a Coupled Neuron Model , 2015, SIAM J. Appl. Dyn. Syst..
[2] Martin Wechselberger,et al. Canards of Folded Saddle-Node Type I , 2015, SIAM J. Math. Anal..
[3] M Desroches,et al. Inflection, canards and excitability threshold in neuronal models , 2012, Journal of Mathematical Biology.
[4] Michelle M. McCarthy,et al. Excitable Neurons, Firing Threshold Manifolds and Canards , 2013, Journal of mathematical neuroscience.
[5] M. Wechselberger. À propos de canards (Apropos canards) , 2012 .
[6] Qinsheng Bi,et al. Slow passage through canard explosion and mixed-mode oscillations in the forced Van der Pol’s equation , 2012 .
[7] M. Kramer,et al. A showcase of torus canards in neuronal bursters , 2011, Journal of mathematical neuroscience.
[8] Mark A Kramer,et al. An elementary model of torus canards. , 2011, Chaos.
[9] M. Krupa,et al. Local analysis near a folded saddle-node singularity , 2010 .
[10] Christian Kuehn,et al. From First Lyapunov Coefficients to Maximal Canards , 2010, Int. J. Bifurc. Chaos.
[11] Bernd Krauskopf,et al. Numerical continuation of canard orbits in slow–fast dynamical systems , 2010 .
[12] Horacio G. Rotstein,et al. Canard Induced Mixed-Mode Oscillations in a Medial Entorhinal Cortex Layer II Stellate Cell Model , 2008, SIAM J. Appl. Dyn. Syst..
[13] Bernd Krauskopf,et al. The Geometry of Slow Manifolds near a Folded Node , 2008, SIAM J. Appl. Dyn. Syst..
[14] Nancy J Kopell,et al. New dynamics in cerebellar Purkinje cells: torus canards. , 2008, Physical review letters.
[15] J. Rubin,et al. The selection of mixed-mode oscillations in a Hodgkin-Huxley model with multiple timescales. , 2008, Chaos.
[16] Irina Erchova,et al. Rhythms of the brain: an examination of mixed mode oscillation approaches to the analysis of neurophysiological data. , 2008, Chaos.
[17] Hiroshi Kawakami,et al. Collapse of duck solution in a circuit driven by an extremely small periodic force , 2005 .
[18] John Guckenheimer,et al. The Forced van der Pol Equation II: Canards in the Reduced System , 2003, SIAM J. Appl. Dyn. Syst..
[19] Eugene M. Izhikevich,et al. Neural excitability, Spiking and bursting , 2000, Int. J. Bifurc. Chaos.
[20] Tere M. Seara,et al. Splitting of Separatrices in Hamiltonian Systems with one and a half Degrees of Freedom , 1997 .
[21] V. G. Gelfreich,et al. Melnikov method and exponentially small splitting of separatrices , 1997 .
[22] T. M. Seara,et al. An asymptotic expression for the splitting of separatrices of the rapidly forced pendulum , 1992 .
[23] É. Benoît,et al. Canards et enlacements , 1990 .
[24] S. Baer,et al. Sungular hopf bifurcation to relaxation oscillations , 1986 .
[25] F. Verhulst,et al. Averaging Methods in Nonlinear Dynamical Systems , 1985 .
[26] S. A. Robertson,et al. NONLINEAR OSCILLATIONS, DYNAMICAL SYSTEMS, AND BIFURCATIONS OF VECTOR FIELDS (Applied Mathematical Sciences, 42) , 1984 .
[27] P. Holmes,et al. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.
[28] M. Levi. Qualitative Analysis of the Periodically Forced Relaxation Oscillations , 1981 .
[29] J. Flaherty,et al. Frequency Entrainment of a Forced van der pol Oscillator. , 1977 .
[30] J. E. Littlewood,et al. On Non‐Linear Differential Equations of the Second Order: I. the Equation y¨ − k(1‐y2)y˙ + y = bλk cos(λl + α), k Large , 1945 .
[31] John Rinzel,et al. Canard theory and excitability , 2013 .
[32] R. Haiduc. Horseshoes in the forced van der Pol system , 2008 .
[33] Martin Krupa,et al. Mixed Mode Oscillations due to the Generalized Canard Phenomenon , 2006 .
[34] Martin Wechselberger,et al. Existence and Bifurcation of Canards in ℝ3 in the Case of a Folded Node , 2005, SIAM J. Appl. Dyn. Syst..
[35] P. Szmolyana,et al. Relaxation oscillations in R 3 , 2004 .
[36] John Guckenheimer,et al. The Forced van der Pol Equation I: The Slow Flow and Its Bifurcations , 2003, SIAM J. Appl. Dyn. Syst..
[37] Peter Szmolyan,et al. Extending Geometric Singular Perturbation Theory to Nonhyperbolic Points - Fold and Canard Points in Two Dimensions , 2001, SIAM J. Math. Anal..
[38] F. Dumortier,et al. Geometric Singular Perturbation Theory Beyond Normal Hyperbolicity , 2001 .
[39] Christopher Jones,et al. Geometric singular perturbation theory , 1995 .
[40] M. Golubitsky,et al. Singularities and groups in bifurcation theory , 1985 .
[41] Wiktor Eckhaus,et al. Relaxation oscillations including a standard chase on French ducks , 1983 .
[42] Neil Fenichel. Geometric singular perturbation theory for ordinary differential equations , 1979 .
[43] O. Lanford,et al. Bifurcation of periodic solutions into invariant tori: The work of Ruelle and Takens , 1973 .
[44] N. Levinson,et al. A Second Order Differential Equation with Singular Solutions , 1949 .
[45] José Carlos Goulart de Siqueira,et al. Differential Equations , 1919, Nature.
[46] Balth. van der Pol,et al. VII. Forced oscillations in a circuit with non-linear resistance. (Reception with reactive triode) , 1927 .