From Canards of Folded Singularities to Torus Canards in a Forced van der Pol Equation

[1]  Jonathan E. Rubin,et al.  Averaging, Folded Singularities, and Torus Canards: Explaining Transitions between Bursting and Spiking in a Coupled Neuron Model , 2015, SIAM J. Appl. Dyn. Syst..

[2]  Martin Wechselberger,et al.  Canards of Folded Saddle-Node Type I , 2015, SIAM J. Math. Anal..

[3]  M Desroches,et al.  Inflection, canards and excitability threshold in neuronal models , 2012, Journal of Mathematical Biology.

[4]  Michelle M. McCarthy,et al.  Excitable Neurons, Firing Threshold Manifolds and Canards , 2013, Journal of mathematical neuroscience.

[5]  M. Wechselberger À propos de canards (Apropos canards) , 2012 .

[6]  Qinsheng Bi,et al.  Slow passage through canard explosion and mixed-mode oscillations in the forced Van der Pol’s equation , 2012 .

[7]  M. Kramer,et al.  A showcase of torus canards in neuronal bursters , 2011, Journal of mathematical neuroscience.

[8]  Mark A Kramer,et al.  An elementary model of torus canards. , 2011, Chaos.

[9]  M. Krupa,et al.  Local analysis near a folded saddle-node singularity , 2010 .

[10]  Christian Kuehn,et al.  From First Lyapunov Coefficients to Maximal Canards , 2010, Int. J. Bifurc. Chaos.

[11]  Bernd Krauskopf,et al.  Numerical continuation of canard orbits in slow–fast dynamical systems , 2010 .

[12]  Horacio G. Rotstein,et al.  Canard Induced Mixed-Mode Oscillations in a Medial Entorhinal Cortex Layer II Stellate Cell Model , 2008, SIAM J. Appl. Dyn. Syst..

[13]  Bernd Krauskopf,et al.  The Geometry of Slow Manifolds near a Folded Node , 2008, SIAM J. Appl. Dyn. Syst..

[14]  Nancy J Kopell,et al.  New dynamics in cerebellar Purkinje cells: torus canards. , 2008, Physical review letters.

[15]  J. Rubin,et al.  The selection of mixed-mode oscillations in a Hodgkin-Huxley model with multiple timescales. , 2008, Chaos.

[16]  Irina Erchova,et al.  Rhythms of the brain: an examination of mixed mode oscillation approaches to the analysis of neurophysiological data. , 2008, Chaos.

[17]  Hiroshi Kawakami,et al.  Collapse of duck solution in a circuit driven by an extremely small periodic force , 2005 .

[18]  John Guckenheimer,et al.  The Forced van der Pol Equation II: Canards in the Reduced System , 2003, SIAM J. Appl. Dyn. Syst..

[19]  Eugene M. Izhikevich,et al.  Neural excitability, Spiking and bursting , 2000, Int. J. Bifurc. Chaos.

[20]  Tere M. Seara,et al.  Splitting of Separatrices in Hamiltonian Systems with one and a half Degrees of Freedom , 1997 .

[21]  V. G. Gelfreich,et al.  Melnikov method and exponentially small splitting of separatrices , 1997 .

[22]  T. M. Seara,et al.  An asymptotic expression for the splitting of separatrices of the rapidly forced pendulum , 1992 .

[23]  É. Benoît,et al.  Canards et enlacements , 1990 .

[24]  S. Baer,et al.  Sungular hopf bifurcation to relaxation oscillations , 1986 .

[25]  F. Verhulst,et al.  Averaging Methods in Nonlinear Dynamical Systems , 1985 .

[26]  S. A. Robertson,et al.  NONLINEAR OSCILLATIONS, DYNAMICAL SYSTEMS, AND BIFURCATIONS OF VECTOR FIELDS (Applied Mathematical Sciences, 42) , 1984 .

[27]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[28]  M. Levi Qualitative Analysis of the Periodically Forced Relaxation Oscillations , 1981 .

[29]  J. Flaherty,et al.  Frequency Entrainment of a Forced van der pol Oscillator. , 1977 .

[30]  J. E. Littlewood,et al.  On Non‐Linear Differential Equations of the Second Order: I. the Equation y¨ − k(1‐y2)y˙ + y = bλk cos(λl + α), k Large , 1945 .

[31]  John Rinzel,et al.  Canard theory and excitability , 2013 .

[32]  R. Haiduc Horseshoes in the forced van der Pol system , 2008 .

[33]  Martin Krupa,et al.  Mixed Mode Oscillations due to the Generalized Canard Phenomenon , 2006 .

[34]  Martin Wechselberger,et al.  Existence and Bifurcation of Canards in ℝ3 in the Case of a Folded Node , 2005, SIAM J. Appl. Dyn. Syst..

[35]  P. Szmolyana,et al.  Relaxation oscillations in R 3 , 2004 .

[36]  John Guckenheimer,et al.  The Forced van der Pol Equation I: The Slow Flow and Its Bifurcations , 2003, SIAM J. Appl. Dyn. Syst..

[37]  Peter Szmolyan,et al.  Extending Geometric Singular Perturbation Theory to Nonhyperbolic Points - Fold and Canard Points in Two Dimensions , 2001, SIAM J. Math. Anal..

[38]  F. Dumortier,et al.  Geometric Singular Perturbation Theory Beyond Normal Hyperbolicity , 2001 .

[39]  Christopher Jones,et al.  Geometric singular perturbation theory , 1995 .

[40]  M. Golubitsky,et al.  Singularities and groups in bifurcation theory , 1985 .

[41]  Wiktor Eckhaus,et al.  Relaxation oscillations including a standard chase on French ducks , 1983 .

[42]  Neil Fenichel Geometric singular perturbation theory for ordinary differential equations , 1979 .

[43]  O. Lanford,et al.  Bifurcation of periodic solutions into invariant tori: The work of Ruelle and Takens , 1973 .

[44]  N. Levinson,et al.  A Second Order Differential Equation with Singular Solutions , 1949 .

[45]  José Carlos Goulart de Siqueira,et al.  Differential Equations , 1919, Nature.

[46]  Balth. van der Pol,et al.  VII. Forced oscillations in a circuit with non-linear resistance. (Reception with reactive triode) , 1927 .